User:Amy Kerzmann/Sandbox 2
From Proteopedia
Voltage-gated Potassium Channel
| |||||||||
1bl8, resolution 3.20Å () | |||||||||
---|---|---|---|---|---|---|---|---|---|
Ligands: | |||||||||
| |||||||||
| |||||||||
Resources: | FirstGlance, OCA, RCSB, PDBsum | ||||||||
Coordinates: | save as pdb, mmCIF, xml |
Backgound
This crystal structure illuminated the principles of ion selectivity when it was solved in 1998.[1] To further demonstrate the importance of this structure, the 2003 Nobel Prize in Chemistry was awarded to the principal investigator, Roderick MacKinnon.
Channel Structure:
|
The potassium channel is a homotetramer, meaning that it is comprised of four identical protein chains or . Each monomer is predominantly alpha , with no beta strands.
The central core of this protein is comprised of eight helices, two from each monomeric subunit. Since each has the same orientation in the membrane, the protein has a four-fold rotational symmetry when viewed from the membrane surface. As a result, each of the channel-lining residues appears as a ring of four identical sidechains. This principle is represented by the conserved residues that function as selectivity filters within the cavity. Additional and residues line the channel. Looking at a of these residues, one can see that some hydrophobic patches remain within the cavity.
Channel Function:
Here's how it works.
References