1hlt

From Proteopedia

Revision as of 12:10, 24 March 2013 by OCA (Talk | contribs)
Jump to: navigation, search

Template:STRUCTURE 1hlt

Contents

THE STRUCTURE OF A NONADECAPEPTIDE OF THE FIFTH EGF DOMAIN OF THROMBOMODULIN COMPLEXED WITH THROMBIN

Template:ABSTRACT PUBMED 7947765

Disease

[TRBM_HUMAN] Defects in THBD are the cause of thrombophilia due to thrombomodulin defect (THPH12) [MIM:614486]. A hemostatic disorder characterized by a tendency to thrombosis.[1][2][3] Defects in THBD are a cause of susceptibility to hemolytic uremic syndrome atypical type 6 (AHUS6) [MIM:612926]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulatory factors in the complement cascade system. Other genes may play a role in modifying the phenotype.[4][5] [THRB_HUMAN] Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:613679]. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.[6][7][8][9][10][11][12][13][14][15][16][17] Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367]; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[18] Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:188050]. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:614390]. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.[19]

Function

[TRBM_HUMAN] Thrombomodulin is a specific endothelial cell receptor that forms a 1:1 stoichiometric complex with thrombin. This complex is responsible for the conversion of protein C to the activated protein C (protein Ca). Once evolved, protein Ca scissions the activated cofactors of the coagulation mechanism, factor Va and factor VIIIa, and thereby reduces the amount of thrombin generated. [THRB_HUMAN] Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.[20]

About this Structure

1hlt is a 5 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

See Also

Reference

  • Mathews II, Padmanabhan KP, Tulinksy A, Sadler JE. Structure of a nonadecapeptide of the fifth EGF domain of thrombomodulin complexed with thrombin. Biochemistry. 1994 Nov 22;33(46):13547-52. PMID:7947765
  1. Ohlin AK, Marlar RA. The first mutation identified in the thrombomodulin gene in a 45-year-old man presenting with thromboembolic disease. Blood. 1995 Jan 15;85(2):330-6. PMID:7811989
  2. Ohlin AK, Norlund L, Marlar RA. Thrombomodulin gene variations and thromboembolic disease. Thromb Haemost. 1997 Jul;78(1):396-400. PMID:9198186
  3. Faioni EM, Franchi F, Castaman G, Biguzzi E, Rodeghiero F. Mutations in the thrombomodulin gene are rare in patients with severe thrombophilia. Br J Haematol. 2002 Aug;118(2):595-9. PMID:12139752
  4. Delvaeye M, Noris M, De Vriese A, Esmon CT, Esmon NL, Ferrell G, Del-Favero J, Plaisance S, Claes B, Lambrechts D, Zoja C, Remuzzi G, Conway EM. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009 Jul 23;361(4):345-57. doi: 10.1056/NEJMoa0810739. PMID:19625716 doi:10.1056/NEJMoa0810739
  5. Maga TK, Nishimura CJ, Weaver AE, Frees KL, Smith RJ. Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mutat. 2010 Jun;31(6):E1445-60. doi: 10.1002/humu.21256. PMID:20513133 doi:10.1002/humu.21256
  6. Wang W, Fu Q, Zhou R, Wu W, Ding Q, Hu Y, Wang X, Wang H, Wang Z. Prothrombin Shanghai: hypoprothrombinaemia caused by substitution of Gla29 by Gly. Haemophilia. 2004 Jan;10(1):94-7. PMID:14962227
  7. Board PG, Shaw DC. Determination of the amino acid substitution in human prothrombin type 3 (157 Glu leads to Lys) and the localization of a third thrombin cleavage site. Br J Haematol. 1983 Jun;54(2):245-54. PMID:6405779
  8. Rabiet MJ, Furie BC, Furie B. Molecular defect of prothrombin Barcelona. Substitution of cysteine for arginine at residue 273. J Biol Chem. 1986 Nov 15;261(32):15045-8. PMID:3771562
  9. Miyata T, Morita T, Inomoto T, Kawauchi S, Shirakami A, Iwanaga S. Prothrombin Tokushima, a replacement of arginine-418 by tryptophan that impairs the fibrinogen clotting activity of derived thrombin Tokushima. Biochemistry. 1987 Feb 24;26(4):1117-22. PMID:3567158
  10. Inomoto T, Shirakami A, Kawauchi S, Shigekiyo T, Saito S, Miyoshi K, Morita T, Iwanaga S. Prothrombin Tokushima: characterization of dysfunctional thrombin derived from a variant of human prothrombin. Blood. 1987 Feb;69(2):565-9. PMID:3801671
  11. Henriksen RA, Mann KG. Identification of the primary structural defect in the dysthrombin thrombin Quick I: substitution of cysteine for arginine-382. Biochemistry. 1988 Dec 27;27(26):9160-5. PMID:3242619
  12. Henriksen RA, Mann KG. Substitution of valine for glycine-558 in the congenital dysthrombin thrombin Quick II alters primary substrate specificity. Biochemistry. 1989 Mar 7;28(5):2078-82. PMID:2719946
  13. Miyata T, Aruga R, Umeyama H, Bezeaud A, Guillin MC, Iwanaga S. Prothrombin Salakta: substitution of glutamic acid-466 by alanine reduces the fibrinogen clotting activity and the esterase activity. Biochemistry. 1992 Aug 25;31(33):7457-62. PMID:1354985
  14. Morishita E, Saito M, Kumabashiri I, Asakura H, Matsuda T, Yamaguchi K. Prothrombin Himi: a compound heterozygote for two dysfunctional prothrombin molecules (Met-337-->Thr and Arg-388-->His). Blood. 1992 Nov 1;80(9):2275-80. PMID:1421398
  15. Iwahana H, Yoshimoto K, Shigekiyo T, Shirakami A, Saito S, Itakura M. Detection of a single base substitution of the gene for prothrombin Tokushima. The application of PCR-SSCP for the genetic and molecular analysis of dysprothrombinemia. Int J Hematol. 1992 Feb;55(1):93-100. PMID:1349838
  16. James HL, Kim DJ, Zheng DQ, Girolami A. Prothrombin Padua I: incomplete activation due to an amino acid substitution at a factor Xa cleavage site. Blood Coagul Fibrinolysis. 1994 Oct;5(5):841-4. PMID:7865694
  17. Degen SJ, McDowell SA, Sparks LM, Scharrer I. Prothrombin Frankfurt: a dysfunctional prothrombin characterized by substitution of Glu-466 by Ala. Thromb Haemost. 1995 Feb;73(2):203-9. PMID:7792730
  18. Casas JP, Hingorani AD, Bautista LE, Sharma P. Meta-analysis of genetic studies in ischemic stroke: thirty-two genes involving approximately 18,000 cases and 58,000 controls. Arch Neurol. 2004 Nov;61(11):1652-61. PMID:15534175 doi:61/11/1652
  19. Pihusch R, Buchholz T, Lohse P, Rubsamen H, Rogenhofer N, Hasbargen U, Hiller E, Thaler CJ. Thrombophilic gene mutations and recurrent spontaneous abortion: prothrombin mutation increases the risk in the first trimester. Am J Reprod Immunol. 2001 Aug;46(2):124-31. PMID:11506076
  20. Glenn KC, Frost GH, Bergmann JS, Carney DH. Synthetic peptides bind to high-affinity thrombin receptors and modulate thrombin mitogenesis. Pept Res. 1988 Nov-Dec;1(2):65-73. PMID:2856554

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools