3cx5

From Proteopedia

Revision as of 06:36, 29 September 2013 by OCA (Talk | contribs)
Jump to: navigation, search

Template:STRUCTURE 3cx5

Contents

Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer.

Template:ABSTRACT PUBMED 18390544

Function

[QCR6_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR6 may mediate formation of the complex between cytochromes c and c1. [CYB_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. [QCR7_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR7 is involved in redox-linked proton pumping. [QCR9_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR9 is required for formation of a fully functional complex. [QCR2_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR2 is required for the assembly of the complex. [CYC1_YEAST] Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. [QCR8_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. QCR8, together with cytochrome b, binds to ubiquinone. [QCR1_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. COR1 may mediate formation of the complex between cytochromes c and c1. [CY1_YEAST] Heme-containing component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is part of the mitochondrial respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c. [UCRI_YEAST] Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. The complex couples electron transfer from ubiquinol to cytochrome c.

About this Structure

3cx5 is a 23 chain structure with sequence from Mus musculus and Saccharomyces cerevisiae. Full crystallographic information is available from OCA.

See Also

Reference

  • Solmaz SR, Hunte C. Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer. J Biol Chem. 2008 Jun 20;283(25):17542-9. Epub 2008 Apr 4. PMID:18390544 doi:10.1074/jbc.M710126200

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools