Hairpin Ribozyme
From Proteopedia
| This Sandbox is Reserved from September 14, 2021, through May 31, 2022, for use in the class Introduction to Biochemistry taught by User:John Means at the University of Rio Grande, Rio Grande, OH, USA. This reservation includes 5 reserved sandboxes (Sandbox Reserved 1590 through Sandbox Reserved 1594). |
To get started:
More help: Help:Editing. For an example of a student Proteopedia page, please see Photosystem II, Tetanospasmin, or Guanine riboswitch. |
Contents |
Hairpin Ribozyme Overview
| |||||||||||
Structure
In the transition state, the
The secondary structure of the hairpin ribozyme contains two independently folding domains, called A and B. In each domain there is an internal loop flanked by two helices(H1 and H2 in domain A and H3 and H4 in domain B). The RNA substrate is bound in domain A through Watson-Crick base pairs in H1 and H2. Once bound to domain A, the substrate is reversibly cleaved. Linkers of varying lengths were inserted between the 5' end of the substrate and the 3' end of the ribozyme in order to test what proximity is preferred by the two domains. The results of the test showed that the two domains prefer to be relatively close to one another and use H2 and H3 as a sort of hinge. In the naturally occurring hairpin ribozyme, this hinge is occupied by a four-way junction, which is believed to regulate inter-domain interactions by alternative stacking of helices.[2]
Kinetics
There are at least four steps in the reaction pathway of the hairpin ribozyme. They are: (1) substrate binding to ribozyme, (2) cleavage in the ribozyme-substrate complex, (3) release of 5' products, and (4) release of 3' products. The rates and equilibrium constants for individual steps have been studied. Substrate binding can reach a minimum of <math>6*10^6 M^-1 min^-1</math>
References
- ↑ Fedor MJ. Structure and function of the hairpin ribozyme. J Mol Biol. 2000 Mar 24;297(2):269-91. PMID:10715200 doi:http://dx.doi.org/10.1006/jmbi.2000.3560
- ↑ Walter NG, Burke JM. The hairpin ribozyme: structure, assembly and catalysis. Curr Opin Chem Biol. 1998 Feb;2(1):24-30. PMID:9667918
