User:Chase Haven/Sandbox 1

From Proteopedia

Jump to: navigation, search

Fibrinogen

Biological Role

The process of haemostasis is crucial to stemming blood loss following vascular injury. It involves a complex balance of pro- and anti-coagulant activities by a multitude of enzymes and cofactors that ultimately lead to a fibrin clot followed by attenuation of the coagulation response to restore normal blood flow. In short, the serine protease thrombin can be thought of as the star player: thrombin cleaves fibrinogen to fibrin (forming the clot) and also activates a trans-glutaminase (Factor XIII) which will create cross-links in the clot to enhance it's tensile strength. Furthermore, upon the formation of the clot thrombin also activates protein C as part of a negative feedback loop, which in turn degrades various cofactors and ultimately shuts down the coagulation response.[1]

Fibrinogen, the chief proteinaceous component of a clot, is a 340 kDa multidomain glycoprotein consisting of termed , and . It circulates in blood at concentrations generally ranging from 2 to 3 mg/mL.[2] Vascular injury exposes tissue factor-bearing subendothelial cells to flowing blood, triggering a coagulation response in order to generate thrombin. This serine protease has a unique specificity for cleavage sites on fibrinogen alpha and beta chains, and when cleaved fibrinopeptides A and B are released. This results in the exposure of polymerization sites known as "knobs", which are complementary to "holes" on other fibrinogen molecules. This interaction is non-covalent but strong enough to support the spontaneous growth of fibrin fibers and ultimately a fibrin clot network capable of stemming blood loss in vivo.[3]

Fibrin clots are highly heterogeneous; numerous factors play a role in determining fiber diameter, types of branch points, and number of branching fibers per unit area. Some of these factors are well understood, such as the effects of higher thrombin or fibrinogen concentrations. Others are less understood, such as calcium and metal ion levels, circulating lipid content, coagulation or fibrinolytic protein levels, some studies have even shown smoking and diabetes may change the structural layout or integrity of fibrin clots.[4]

Human Fibrinogen (PDB entry 3ghg)

Drag the structure with the mouse to rotate

References

  1. Mann KG, Brummel-Ziedins K, Orfeo T, Butenas S. Models of blood coagulation. Blood Cells Mol Dis. 2006 Mar-Apr;36(2):108-17. Epub 2006 Feb 23. PMID:16500122 doi:http://dx.doi.org/10.1016/j.bcmd.2005.12.034
  2. Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry. 2009 May 12;48(18):3877-86. PMID:19296670 doi:10.1021/bi802205g
  3. Falvo MR, Gorkun OV, Lord ST. The molecular origins of the mechanical properties of fibrin. Biophys Chem. 2010 Nov;152(1-3):15-20. doi: 10.1016/j.bpc.2010.08.009. PMID:20888119 doi:http://dx.doi.org/10.1016/j.bpc.2010.08.009
  4. Wolberg AS. Determinants of fibrin formation, structure, and function. Curr Opin Hematol. 2012 Sep;19(5):349-56. doi: 10.1097/MOH.0b013e32835673c2. PMID:22759629 doi:http://dx.doi.org/10.1097/MOH.0b013e32835673c2
  5. Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry. 2009 May 12;48(18):3877-86. PMID:19296670 doi:10.1021/bi802205g
  6. Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry. 2009 May 12;48(18):3877-86. PMID:19296670 doi:10.1021/bi802205g
  7. Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry. 2009 May 12;48(18):3877-86. PMID:19296670 doi:10.1021/bi802205g
  8. Cheng Y, LeGall T, Oldfield CJ, Dunker AK, Uversky VN. Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry. 2006 Sep 5;45(35):10448-60. PMID:16939197 doi:http://dx.doi.org/10.1021/bi060981d
  9. Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry. 2009 May 12;48(18):3877-86. PMID:19296670 doi:10.1021/bi802205g
  10. Gallivan JP, Dougherty DA. Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9459-64. PMID:10449714
  11. Zhang JZ, Redman CM. Role of interchain disulfide bonds on the assembly and secretion of human fibrinogen. J Biol Chem. 1994 Jan 7;269(1):652-8. PMID:8276866
  12. Kollman JM, Pandi L, Sawaya MR, Riley M, Doolittle RF. Crystal structure of human fibrinogen. Biochemistry. 2009 May 12;48(18):3877-86. PMID:19296670 doi:10.1021/bi802205g
  13. Zhang JZ, Redman CM. Role of interchain disulfide bonds on the assembly and secretion of human fibrinogen. J Biol Chem. 1994 Jan 7;269(1):652-8. PMID:8276866
  14. Falvo MR, Gorkun OV, Lord ST. The molecular origins of the mechanical properties of fibrin. Biophys Chem. 2010 Nov;152(1-3):15-20. doi: 10.1016/j.bpc.2010.08.009. PMID:20888119 doi:http://dx.doi.org/10.1016/j.bpc.2010.08.009
  15. Falvo MR, Gorkun OV, Lord ST. The molecular origins of the mechanical properties of fibrin. Biophys Chem. 2010 Nov;152(1-3):15-20. doi: 10.1016/j.bpc.2010.08.009. PMID:20888119 doi:http://dx.doi.org/10.1016/j.bpc.2010.08.009
  16. Falvo MR, Gorkun OV, Lord ST. The molecular origins of the mechanical properties of fibrin. Biophys Chem. 2010 Nov;152(1-3):15-20. doi: 10.1016/j.bpc.2010.08.009. PMID:20888119 doi:http://dx.doi.org/10.1016/j.bpc.2010.08.009
  17. Collet JP, Moen JL, Veklich YI, Gorkun OV, Lord ST, Montalescot G, Weisel JW. The alphaC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood. 2005 Dec 1;106(12):3824-30. Epub 2005 Aug 9. PMID:16091450 doi:http://dx.doi.org/10.1182/blood-2005-05-2150
  18. Murakawa M, Okamura T, Kamura T, Shibuya T, Harada M, Niho Y. Diversity of primary structures of the carboxy-terminal regions of mammalian fibrinogen A alpha-chains. Characterization of the partial nucleotide and deduced amino acid sequences in five mammalian species; rhesus monkey, pig, dog, mouse and Syrian hamster. Thromb Haemost. 1993 Apr 1;69(4):351-60. PMID:8497848
  19. Doolittle RF, Kollman JM. Natively unfolded regions of the vertebrate fibrinogen molecule. Proteins. 2006 May 1;63(2):391-7. PMID:16288455 doi:http://dx.doi.org/10.1002/prot.20758
  20. Wang YZ, Patterson J, Gray JE, Yu C, Cottrell BA, Shimizu A, Graham D, Riley M, Doolittle RF. Complete sequence of the lamprey fibrinogen alpha chain. Biochemistry. 1989 Dec 12;28(25):9801-6. PMID:2611265
  21. Tatham AS, Shewry PR. Comparative structures and properties of elastic proteins. Philos Trans R Soc Lond B Biol Sci. 2002 Feb 28;357(1418):229-34. PMID:11911780 doi:http://dx.doi.org/10.1098/rstb.2001.1031
  22. Falvo MR, Millard D, O'Brien ET 3rd, Superfine R, Lord ST. Length of tandem repeats in fibrin's alphaC region correlates with fiber extensibility. J Thromb Haemost. 2008 Nov;6(11):1991-3. doi: 10.1111/j.1538-7836.2008.03147.x., Epub 2008 Aug 28. PMID:18761721 doi:http://dx.doi.org/10.1111/j.1538-7836.2008.03147.x
  23. Murakawa M, Okamura T, Kamura T, Shibuya T, Harada M, Niho Y. Diversity of primary structures of the carboxy-terminal regions of mammalian fibrinogen A alpha-chains. Characterization of the partial nucleotide and deduced amino acid sequences in five mammalian species; rhesus monkey, pig, dog, mouse and Syrian hamster. Thromb Haemost. 1993 Apr 1;69(4):351-60. PMID:8497848

Proteopedia Page Contributors and Editors (what is this?)

Chase Haven

Personal tools