Sandbox Reserved 933
From Proteopedia
| This Sandbox is Reserved from 01/04/2014, through 30/06/2014 for use in the course "510042. Protein structure, function and folding" taught by Prof Adrian Goldman, Tommi Kajander, Taru Meri, Konstantin Kogan and Juho Kellosalo at the University of Helsinki. This reservation includes Sandbox Reserved 923 through Sandbox Reserved 947. |
To get started:
More help: Help:Editing |
Contents |
Evolution of DNA binding domain of LEAFY: from angiosperms to mosses
Introduction
FLORICAULA/LEAFY (FLO/LFY) genes encode a plant specific transcription factor family that controlling floral fate of reproductive phase. [1][2]. In the plant model system Arabidopsis thaliana , ‘’LFY’’ also acts upstream of floral homeotic genes to modulate organ identity. [3] LFY activates the organ identity genes by binding to promoter regions of floral organ identity genes. LFY can directly bind to the promoter to APELATA1 (AP1), while co-regulators UNUSUAL FLORAL ORGANS (UFO) [4] and WUSCHEL (WUS)[5] are required for increment of binding affinity to promoter regions of APELATA3 (AP3) and AGAMOUS (AG), respectively. The exact mechanism how LFY binds to these promoters has yet to be well elucidated until the first structure report about and [6] . Among land plants, FLO/LFY homologs share a highly conserved DNA binding region that a hypothesis claimed substitution in this domain might result in the functional divergence[7] . Recently, a new study provided new insights of structural basis of LEAFY evolution by changing DNA binding activity[8].
| |||||||||||
LEAFY Evolution
Reference
- ↑ 1.0 1.1 1.2 Detlef Weigel, John Alvarez, David R. Smyth, Martin F. Yanofsky, Elliot M. Meyerowitz, LEAFY controls floral meristem identity in Arabidopsis. Cell 69 :843-859, http://dx.doi.org/10.1016/0092-8674(92)90295-N.
- ↑ 2.0 2.1 Coen, E.S., Romero, J.M., Doyle, S., Elliot, R., Murphy, G. & Carpenter, R. (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311–1322 http://dx.doi.org/10.1016/0092-8674(90)90426-F
- ↑ Irish, V. F. (2010), The flowering of Arabidopsis flower development. The Plant Journal, 61: 1014–1028. http://dx.doi.org/10.1111/j.1365-313X.2009.04065.x
- ↑ Chae, E., Tan, Q.K., Hill, T.A. & Irish, V.F. 2008. An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135:1235-45 http://dx.doi.org/10.1242/dev.015842
- ↑ HONG, R.L., HAMAGUCHI, L., BUSCH, M.A. and WEIGEL, D. (2003). Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing. Plant Cell 15: 1296-1309. http://dx.doi.org/10.1105/tpc.009548
- ↑ Hames, C., Ptchelkine, D., Grimm, C., Thevenon, E., Moyroud, E., Gérard, F. Martiel, J.L., Benlloch, R., Parcy, F. & Müller, C.W. 2008. Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO Journal 27:2628-2637. http://dx.doi.org/10.1038/emboj.2008.184
- ↑ MAIZEL, A., BUSCH, M.A., TANAHASHI, T., PERKOVIC, J., KATAO, M., HASEBE, M. and WEIGEL, D. (2005). The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science 308: 260-263. http://dx.doi.org/10.1126/science.1108229
- ↑ Sayou, C., Monniaux, M., Nanao, M.H., Moyroud, E., Brockington, S.F., Thévenon, E., Chahtane, H., Warthmann, N., Melkonian, M., Zhang, Y., Wong, G., Weigel, D., Parcy, F. and Dumas, R. 2014. A Promiscuous Intermediate Underlies the Evolution of LEAFY DNA Binding Specificity Science 343: 645-648 http://dx.doi.org/10.1126/science.1248229
- ↑ Cite error: Invalid
<ref>tag; no text was provided for refs namedHames_et_al.
