We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
1exr
From Proteopedia
Revision as of 08:17, 28 September 2014 by OCA (Talk | contribs)
1exr is a 1 chain structure with sequence from Paramecium tetraurelia. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Calmodulin (CaM) is a highly conserved 17 kDa eukaryotic protein that can bind specifically to over 100 protein targets in response to a Ca(2+) signal. Ca(2+)-CaM requires a considerable degree of structural plasticity to accomplish this physiological role; however, the nature and extent of this plasticity remain poorly characterized. Here, we present the 1.0 A crystal structure of Paramecium tetraurelia Ca(2+)-CaM, including 36 discretely disordered residues and a fifth Ca(2+) that mediates a crystal contact. The 36 discretely disordered residues are located primarily in the central helix and the two hydrophobic binding pockets, and reveal correlated side-chain disorder that may assist target-specific deformation of the binding pockets. Evidence of domain displacements and discrete backbone disorder is provided by translation-libration-screw (TLS) analysis and multiconformer models of protein disorder, respectively. In total, the evidence for disorder at every accessible length-scale in Ca(2+)-CaM suggests that the protein occupies a large number of hierarchically arranged conformational substates in the crystalline environment and may sample a quasi-continuous spectrum of conformations in solution. Therefore, we propose that the functionally distinct forms of CaM are less structurally distinct than previously believed, and that the different activities of CaM in response to Ca(2+) may result primarily from Ca(2+)-mediated alterations in the dynamics of the protein.
The 1.0 A crystal structure of Ca(2+)-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity.,Wilson MA, Brunger AT J Mol Biol. 2000 Sep 1;301(5):1237-56. PMID:10966818[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Wilson MA, Brunger AT. The 1.0 A crystal structure of Ca(2+)-bound calmodulin: an analysis of disorder and implications for functionally relevant plasticity. J Mol Biol. 2000 Sep 1;301(5):1237-56. PMID:10966818 doi:10.1006/jmbi.2000.4029