We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
1hei
From Proteopedia
Revision as of 09:46, 28 September 2014 by OCA (Talk | contribs)
1hei is a 2 chain structure with sequence from Viruses. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Helicases are nucleotide triphosphate (NTP)-dependent enzymes responsible for unwinding duplex DNA and RNA during genomic replication. The 2.1 A resolution structure of the HCV helicase from the positive-stranded RNA hepatitis C virus reveals a molecule with distinct NTPase and RNA binding domains. The structure supports a mechanism of helicase activity involving initial recognition of the requisite 3' single-stranded region on the nucleic acid substrate by a conserved arginine-rich sequence on the RNA binding domain. Comparison of crystallographically independent molecules shows that rotation of the RNA binding domain involves conformational changes within a conserved TATPP sequence and untwisting of an extended antiparallel beta-sheet. Location of the TATPP sequence at the end of an NTPase domain beta-strand structurally homologous to the 'switch region' of many NTP-dependent enzymes offers the possibility that domain rotation is coupled to NTP hydrolysis in the helicase catalytic cycle.
Structure of the hepatitis C virus RNA helicase domain.,Yao N, Hesson T, Cable M, Hong Z, Kwong AD, Le HV, Weber PC Nat Struct Biol. 1997 Jun;4(6):463-7. PMID:9187654[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Yao N, Hesson T, Cable M, Hong Z, Kwong AD, Le HV, Weber PC. Structure of the hepatitis C virus RNA helicase domain. Nat Struct Biol. 1997 Jun;4(6):463-7. PMID:9187654