1eyj

From Proteopedia

Revision as of 09:01, 20 March 2008 by OCA (Talk | contribs)
Jump to: navigation, search


PDB ID 1eyj

Drag the structure with the mouse to rotate
, resolution 2.28Å
Ligands: , , and
Activity: Fructose-bisphosphatase, with EC number 3.1.3.11
Coordinates: save as pdb, mmCIF, xml



FRUCTOSE-1,6-BISPHOSPHATASE COMPLEX WITH AMP, MAGNESIUM, FRUCTOSE-6-PHOSPHATE AND PHOSPHATE (T-STATE)


Overview

Crystal structures of metal-product complexes of fructose 1, 6-bisphosphatase (FBPase) reveal competition between AMP and divalent cations. In the presence of AMP, the Zn(2+)-product and Mg(2+)-product complexes have a divalent cation present only at one of three metal binding sites (site 1). The enzyme is in the T-state conformation with a disordered loop of residues 52-72 (loop 52-72). In the absence of AMP, the enzyme crystallizes in the R-state conformation, with loop 52-72 associated with the active site. In structures without AMP, three metal-binding sites are occupied by Zn(2+) and two of three metal sites (sites 1 and 2) by Mg(2+). Evidently, the association of AMP with FBPase disorders loop 52-72, the consequence of which is the release of cations from two of three metal binding sites. In the Mg(2+) complexes (but not the Zn(2+) complexes), the 1-OH group of fructose 6-phosphate (F6P) coordinates to the metal at site 1 and is oriented for a nucleophilic attack on the bound phosphate molecule. A mechanism is presented for the forward reaction, in which Asp74 and Glu98 together generate a hydroxide anion coordinated to the Mg(2+) at site 2, which then displaces F6P. Development of negative charge on the 1-oxygen of F6P is stabilized by its coordination to the Mg(2+) at site 1.

About this Structure

1EYJ is a Single protein structure of sequence from Sus scrofa. Full crystallographic information is available from OCA.

Reference

Crystal structures of fructose 1,6-bisphosphatase: mechanism of catalysis and allosteric inhibition revealed in product complexes., Choe JY, Fromm HJ, Honzatko RB, Biochemistry. 2000 Jul 25;39(29):8565-74. PMID:10913263

Page seeded by OCA on Thu Mar 20 11:01:58 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools