We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
1g6n
From Proteopedia
Revision as of 14:31, 28 September 2014 by OCA (Talk | contribs)
1g6n is a 2 chain structure with sequence from Escherichia coli. This structure supersedes the now removed PDB entries and 1gap. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
After an allosteric transition produced by the binding of cyclic AMP (cAMP), the Escherichia coli catabolite gene activator protein (CAP) binds DNA specifically and activates transcription. The three-dimensional crystal structure of the CAP-cAMP complex has been refined at 2.1 A resolution, thus enabling a better evaluation of the structural basis for CAP phenotypes, the interactions of cAMP with CAP and the roles played by water structure. A review of mutational analysis of CAP together with the additional structural information presented here suggests a possible mechanism for the cAMP-induced allostery required for DNA binding and transcriptional activation. We hypothesize that cAMP binding may reorient the coiled-coil C-helices, which provide most of the dimer interface, thereby altering the relative positions of the DNA-binding domains of the CAP dimer. Additionally, cAMP binding may cause a further rearrangement of the DNA-binding and cAMP-binding domains of CAP via a flap consisting of beta-strands 4 and 5 which lies over the cAMP.
Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution.,Passner JM, Schultz SC, Steitz TA J Mol Biol. 2000 Dec 15;304(5):847-59. PMID:11124031[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Passner JM, Schultz SC, Steitz TA. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution. J Mol Biol. 2000 Dec 15;304(5):847-59. PMID:11124031 doi:http://dx.doi.org/10.1006/jmbi.2000.4231