1n4l is a 3 chain structure with sequence from Moloney murine leukemia virus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The polypurine tract (PPT) from the HIV-1 genome is resistant to digestion by reverse transcriptase following (-)-strand synthesis and is used to prime (+)-strand synthesis during retroviral replication. We have determined the crystal structure of the asymmetric DNA/DNA analog16-mer duplex (CTTTTTAAAAGAAAAG/CTTTTCTTTTAAAAAG) comprising most of the "visible" portion of the RNA:DNA hybrid from the polypurine tract of HIV-1, which was previously reported in a complex with HIV-1 reverse transcriptase. Our 16-mer completely encompasses a 10-mer DNA duplex analog of the HIV-1 PPT. We report here a detailed analysis of our B' form 16-mer DNA structure, including three full pure A-tracts, as well as a comparative structural analysis with polypurine tract and other A-tract-containing nucleic acid structures. Our analysis reveals that the polypurine tract structures share structural features despite being different nucleic acid forms (i.e. DNA:DNA versus RNA:DNA). In addition, the previously reported A-tract-containing DNA molecules bound to topoisomerase I are remarkably similar to our polypurine tract 16-mer structure. On the basis of our analysis, we suggest that the specific topology of long pure A-tracts is remarkably comparable across a wide array of biological environments.
Staying straight with A-tracts: a DNA analog of the HIV-1 polypurine tract.,Cote ML, Pflomm M, Georgiadis MM J Mol Biol. 2003 Jun 27;330(1):57-74. PMID:12818202[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Cote ML, Pflomm M, Georgiadis MM. Staying straight with A-tracts: a DNA analog of the HIV-1 polypurine tract. J Mol Biol. 2003 Jun 27;330(1):57-74. PMID:12818202