| Structural highlights
1nir is a 2 chain structure with sequence from Pseudomonas aeruginosa. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , ,
| Activity: | Nitrite reductase (NO-forming), with EC number 1.7.2.1 |
Resources: | FirstGlance, OCA, RCSB, PDBsum |
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
BACKGROUND: Nitrite reductase from Pseudomonas aeruginosa (NiR-Pa) is a dimer consisting of two identical 60 kDa subunits, each of which contains one c and one d1 heme group. This enzyme, a soluble component of the electron-transfer chain that uses nitrate as a source of energy, can be induced by the addition of nitrate to the bacterial growth medium. NiR-Pa catalyzes the reduction of nitrite (NO2-) to nitric oxide (NO); in vitro, both cytochrome c551 and azurin are efficient electron donors in this reaction. NiR is a key denitrification enzyme, which controls the rate of the production of toxic nitric oxide (NO) and ultimately regulates the release of NO into the atmosphere. RESULTS: The structure of the orthorhombic form (P2(1)2(1)2) of oxidized NiR-Pa was solved at 2.15 A resolution, using molecular replacement with the coordinates of the NiR from Thiosphaera pantotropha (NiR-Tp) as the starting model. Although the d1-heme domains are almost identical in both enzyme structures, the c domain of NiR-Pa is more like the classical class I cytochrome-c fold because it has His51 and Met88 as heme ligands, instead of His17 and His69 present in NiR-Tp. In addition, the methionine-bearing loop, which was displaced by His17 of the NiR-Tp N-terminal segment, is back to normal in our structure. The N-terminal residues (5/6-30) of NiR-Pa and NiR-Tp have little sequence identity. In Nir-Pa, this N-terminal segment of one monomer crosses the dimer interface and wraps itself around the other monomer. Tyr10 of this segment is hydrogen bonded to an hydroxide ion--the sixth ligand of the d1-heme Fe, whereas the equivalent residue in NiR-Tp, Tyr25, is directly bound to the Fe. CONCLUSIONS: Two ligands of hemes c and d1 differ between the two known NiR structures, which accounts for the fact that they have quite different spectroscopic and kinetic features. The unexpected domain-crossing by the N-terminal segment of NiR-Pa is comparable to that of 'domain swapping' or 'arm exchange' previously observed in other systems and may explain the observed cooperativity between monomers of dimeric NiR-Pa. In spite of having similar sequence and fold, the different kinetic behaviour and the spectral features of NiR-Pa and NiR-Tp are tuned by the N-terminal stretch of residues. A further example of this may come from another NiR, from Pseudomonas stutzeri, which has an N terminus very different from that of the two above mentioned NiRs.
N-terminal arm exchange is observed in the 2.15 A crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa.,Nurizzo D, Silvestrini MC, Mathieu M, Cutruzzola F, Bourgeois D, Fulop V, Hajdu J, Brunori M, Tegoni M, Cambillau C Structure. 1997 Sep 15;5(9):1157-71. PMID:9331415[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Nurizzo D, Silvestrini MC, Mathieu M, Cutruzzola F, Bourgeois D, Fulop V, Hajdu J, Brunori M, Tegoni M, Cambillau C. N-terminal arm exchange is observed in the 2.15 A crystal structure of oxidized nitrite reductase from Pseudomonas aeruginosa. Structure. 1997 Sep 15;5(9):1157-71. PMID:9331415
|