1poa is a 1 chain structure with sequence from Naja atra. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
A chemical description of the action of phospholipase A2 (PLA2) can now be inferred with confidence from three high-resolution x-ray crystal structures. The first is the structure of the PLA2 from the venom of the Chinese cobra (Naja naja atra) in a complex with a phosphonate transition-state analogue. This enzyme is typical of a large, well-studied homologous family of PLA2S. The second is a similar complex with the evolutionarily distant bee-venom PLA2. The third structure is the uninhibited PLA2 from Chinese cobra venom. Despite the different molecular architectures of the cobra and bee-venom PLA2s, the transition-state analogue interacts in a nearly identical way with the catalytic machinery of both enzymes. The disposition of the fatty-acid side chains suggests a common access route of the substrate from its position in the lipid aggregate to its productive interaction with the active site. Comparison of the cobra-venom complex with the uninhibited enzyme indicates that optimal binding and catalysis at the lipid-water interface is due to facilitated substrate diffusion from the interfacial binding surface to the catalytic site rather than an allosteric change in the enzyme's structure. However, a second bound calcium ion changes its position upon the binding of the transition-state analogue, suggesting a mechanism for augmenting the critical electrophile.
Interfacial catalysis: the mechanism of phospholipase A2.,Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB Science. 1990 Dec 14;250(4987):1541-6. PMID:2274785[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Scott DL, White SP, Otwinowski Z, Yuan W, Gelb MH, Sigler PB. Interfacial catalysis: the mechanism of phospholipase A2. Science. 1990 Dec 14;250(4987):1541-6. PMID:2274785