We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
1rc7
From Proteopedia
Revision as of 23:48, 28 September 2014 by OCA (Talk | contribs)
1rc7 is a 5 chain structure with sequence from Aquifex aeolicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Ribonuclease III (RNase III) represents a family of double-stranded RNA (dsRNA) endonucleases. The simplest bacterial enzyme contains an endonuclease domain (endoND) and a dsRNA binding domain (dsRBD). RNase III can affect RNA structure and gene expression in either of two ways: as a dsRNA-processing enzyme that cleaves dsRNA, or as a dsRNA binding protein that binds but does not cleave dsRNA. We previously determined the endoND structure of Aquifex aeolicus RNase III (Aa-RNase III) and modeled a catalytic complex of full-length Aa-RNase III with dsRNA. Here, we present the crystal structure of Aa-RNase III in complex with dsRNA, revealing a noncatalytic assembly. The major differences between the two functional forms of RNase III.dsRNA are the conformation of the protein and the orientation and location of dsRNA. The flexibility of a 7 residue linker between the endoND and dsRBD enables the transition between these two forms.
Noncatalytic assembly of ribonuclease III with double-stranded RNA.,Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X Structure. 2004 Mar;12(3):457-66. PMID:15016361[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Blaszczyk J, Gan J, Tropea JE, Court DL, Waugh DS, Ji X. Noncatalytic assembly of ribonuclease III with double-stranded RNA. Structure. 2004 Mar;12(3):457-66. PMID:15016361 doi:http://dx.doi.org/10.1016/j.str.2004.02.004