1uwv is a 1 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
RumA catalyzes transfer of a methyl group from S-adenosylmethionine (SAM) specifically to uridine 1939 of 23S ribosomal RNA in Escherichia coli to yield 5-methyluridine. We determined the crystal structure of RumA at 1.95 A resolution. The protein is organized into three structural domains: The N-terminal domain contains sequence homology to the conserved TRAM motif and displays a five-stranded beta barrel architecture characteristic of an oligosaccharide/oligonucleotide binding fold. The central domain contains a [Fe(4)S(4)] cluster coordinated by four conserved cysteine residues. The C-terminal domain displays the typical SAM-dependent methyltransferase fold. The catalytic nucleophile Cys389 lies in a motif different from that in DNA 5-methylcytosine methyltransferases. The electrostatic potential surface reveals a predominately positively charged area that covers the concave surface of the first two domains and suggests an RNA binding mode. The iron-sulfur cluster may be involved in the correct folding of the protein or may have a role in RNA binding.
Crystal structure of RumA, an iron-sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase.,Lee TT, Agarwalla S, Stroud RM Structure. 2004 Mar;12(3):397-407. PMID:15016356[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
↑ Lee TT, Agarwalla S, Stroud RM. Crystal structure of RumA, an iron-sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase. Structure. 2004 Mar;12(3):397-407. PMID:15016356 doi:10.1016/j.str.2004.02.009