| Structural highlights
1v92 is a 1 chain structure with sequence from Rattus norvegicus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Resources: | FirstGlance, OCA, RCSB, PDBsum |
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
p47 is a major adaptor molecule of the cytosolic AAA ATPase p97. The principal role of the p97-p47 complex is in regulation of membrane fusion events. Mono-ubiquitin recognition by p47 has also been shown to be crucial in the p97-p47-mediated Golgi membrane fusion events. Here, we describe the high-resolution solution structures of the N-terminal UBA domain and the central domain (SEP) from p47. The p47 UBA domain has the characteristic three-helix bundle fold and forms a highly stable complex with ubiquitin. We report the interaction surfaces of the two proteins and present a structure for the p47 UBA-ubiquitin complex. The p47 SEP domain adopts a novel fold with a betabetabetaalphaalphabeta secondary structure arrangement, where beta4 pairs in a parallel fashion to beta1. Based on biophysical studies, we demonstrate a clear propensity for the self-association of p47. Furthermore, p97 N binding abolishes p47 self-association, revealing the potential interaction surfaces for recognition of other domains within p97 or the substrate.
Structure, dynamics and interactions of p47, a major adaptor of the AAA ATPase, p97.,Yuan X, Simpson P, McKeown C, Kondo H, Uchiyama K, Wallis R, Dreveny I, Keetch C, Zhang X, Robinson C, Freemont P, Matthews S EMBO J. 2004 Apr 7;23(7):1463-73. Epub 2004 Mar 18. PMID:15029246[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Yuan X, Simpson P, McKeown C, Kondo H, Uchiyama K, Wallis R, Dreveny I, Keetch C, Zhang X, Robinson C, Freemont P, Matthews S. Structure, dynamics and interactions of p47, a major adaptor of the AAA ATPase, p97. EMBO J. 2004 Apr 7;23(7):1463-73. Epub 2004 Mar 18. PMID:15029246 doi:10.1038/sj.emboj.7600152
|