We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
2e4f
From Proteopedia
Revision as of 01:33, 30 September 2014 by OCA (Talk | contribs)
2e4f is a 1 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
[IRK6_MOUSE] Note=Defects in Kcnj6 are the cause of the weaver (wv) phenotype. Homozygous animals suffer from severe ataxia that is obvious by about the second postnatal week. The cerebellum of these animals is drastically reduced in size due to depletion of the major cell type of cerebellum, the granule cell neuron. Heterozygous animals are not ataxic but have an intermediate number of surviving granule cells. Male homozygotes are sterile, because of complete failure of sperm production. Both hetero- and homozygous animals undergo sporadic tonic-clonic seizures.
Function
[IRK6_MOUSE] This potassium channel is controlled by G proteins. It plays a role in granule cell differentiation, possibly via membrane hyperpolarization. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.