We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
2aac
From Proteopedia
Revision as of 02:47, 30 September 2014 by OCA (Talk | contribs)
2aac is a 2 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The crystal structure of the sugar-binding and dimerization domain of the Escherichia coli gene regulatory protein, AraC, has been determined in complex with the competitive inhibitor D-fucose at pH 5.5 to a resolution of 1.6 A. An in-depth analysis shows that the structural basis for AraC carbohydrate specificity arises from the precise arrangement of hydrogen bond-forming protein side-chains around the bound sugar molecule. van der Waals interactions also contribute to the epimeric and anomeric selectivity of the protein. The methyl group of D-fucose is accommodated by small side-chain movements in the sugar-binding site that result in a slight distortion in the positioning of the amino-terminal arm. A comparison of this structure with the 1.5 A structure of AraC complexed with L-arabinose at neutral pH surprisingly revealed very small structural changes between the two complexes. Based on solution data, we suspect that the low pH used to crystallize the fucose complex affected the structure, and speculate about the nature of the changes between pH 5.5 and neutral pH and their implications for gene regulation by AraC. A comparison with the structurally unrelated E. coli periplasmic sugar-binding proteins reveals that conserved features of carbohydrate recognition are present, despite a complete lack of structural similarity between the two classes of proteins, suggesting convergent evolution of carbohydrate binding.
The 1.6 A crystal structure of the AraC sugar-binding and dimerization domain complexed with D-fucose.,Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C J Mol Biol. 1997 Oct 17;273(1):226-37. PMID:9367758[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
↑ Soisson SM, MacDougall-Shackleton B, Schleif R, Wolberger C. The 1.6 A crystal structure of the AraC sugar-binding and dimerization domain complexed with D-fucose. J Mol Biol. 1997 Oct 17;273(1):226-37. PMID:9367758 doi:10.1006/jmbi.1997.1314