We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
2ka1
From Proteopedia
Revision as of 08:52, 30 September 2014 by OCA (Talk | contribs)
2ka1 is a 2 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Mutagenesis data suggest that BNIP3 transmembrane domain dimerization depends critically on hydrogen bonding between His 173 and Ser 172, but a recent structural analysis indicates that these residues adopt multiple conformations and are not always hydrogen bonded. We show that in dodecylphosphocholine micelles the structure of the BNIP3 transmembrane domain is modulated by phospholipids and that appropriate reconstitution and lipid titration yield a single set of peptide resonances. NMR structure determination reveals a symmetric dimer in which all interfacial residues, including His 173 and Ser 172, are well-defined. Small residues Ala 176, Gly 180, and Gly 184 allow close approach of essentially ideal helices in a geometry that supports intermonomer hydrogen bond formation between the side chains of His 173 and Ser 172. Bulky residues Ile 177 and Ile 181 pack against small residues of the opposite monomer, and favorable polar backbone-backbone contacts at the interface likely include noncanonical Calpha-H.O=C hydrogen bonds from Gly 180 to Ile 177. Modeling mutations into the structure shows that most deleterious hydrophobic substitutions eliminate the His-Ser hydrogen bond or introduce an intermonomer clash, indicating critical roles for sterics and hydrogen bonding in the sequence dependence of dimerization. Substitutions at most noninterfacial positions do not alter dimerization, but the disruptive effects of substitutions at Ile 183 cannot be rationalized in terms of peptide-peptide contacts and therefore may indicate a role for peptide-detergent or peptide-lipid interactions at this position.
Structural basis for dimerization of the BNIP3 transmembrane domain.,Sulistijo ES, Mackenzie KR Biochemistry. 2009 Jun 16;48(23):5106-20. PMID:19415897[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
↑ Sulistijo ES, Mackenzie KR. Structural basis for dimerization of the BNIP3 transmembrane domain. Biochemistry. 2009 Jun 16;48(23):5106-20. PMID:19415897 doi:10.1021/bi802245u