Structural highlights 
  Evolutionary Conservation 
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
  Publication Abstract from PubMed 
C(4)-dicarboxylates are the major carbon and energy sources during the symbiotic growth of rhizobia. Responses to C(4)-dicarboxylates depend on typical two-component systems (TCS) consisting of a transmembrane sensor histidine kinase and a cytoplasmic response regulator. The DctB-DctD system is the first identified TCS for C(4)-dicarboxylates sensing. Direct ligand binding to the sensor domain of DctB is believed to be the first step of the sensing events. In this report, the water-soluble periplasmic sensor domain of Sinorhizobium meliloti DctB (DctBp) was studied, and three crystal structures were solved: the apo protein, a complex with C(4) succinate, and a complex with C(3) malonate. Different from the two structurally known CitA family of carboxylate sensor proteins CitA and DcuS, the structure of DctBp consists of two tandem Per-Arnt-Sim (PAS) domains and one N-terminal helical region. Only the membrane-distal PAS domain was found to bind the ligands, whereas the proximal PAS domain was empty. Comparison of DctB, CitA, and DcuS suggests a detailed stereochemistry of C(4)-dicarboxylates ligand perception. The structures of the different ligand binding states of DctBp also revealed a series of conformational changes initiated upon ligand binding and propagated to the N-terminal domain responsible for dimerization, providing insights into understanding the detailed mechanism of the signal transduction of TCS histidine kinases.
C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain.,Zhou YF, Nan B, Nan J, Ma Q, Panjikar S, Liang YH, Wang Y, Su XD J Mol Biol. 2008 Oct 31;383(1):49-61. Epub 2008 Aug 12. PMID:18725229[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
 
  References 
- ↑ Zhou YF, Nan B, Nan J, Ma Q, Panjikar S, Liang YH, Wang Y, Su XD. C4-dicarboxylates sensing mechanism revealed by the crystal structures of DctB sensor domain. J Mol Biol. 2008 Oct 31;383(1):49-61. Epub 2008 Aug 12. PMID:18725229 doi:10.1016/j.jmb.2008.08.010