Structural highlights
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The CheY protein is the response regulator in bacterial chemotaxis. Phosphorylation of a conserved aspartyl residue induces structural changes that convert the protein from an inactive to an active state. The short half-life of the aspartyl-phosphate has precluded detailed structural analysis of the active protein. Persistent activation of Escherichia coli CheY was achieved by complexation with beryllofluoride (BeF(3)(-)) and the structure determined by NMR spectroscopy to a backbone r.m.s.d. of 0.58(+/-0.08) A. Formation of a hydrogen bond between the Thr87 OH group and an active site acceptor, presumably Asp57.BeF(3)(-), stabilizes a coupled rearrangement of highly conserved residues, Thr87 and Tyr106, along with displacement of beta4 and H4, to yield the active state. The coupled rearrangement may be a more general mechanism for activation of receiver domains.
NMR structure of activated CheY.,Cho HS, Lee SY, Yan D, Pan X, Parkinson JS, Kustu S, Wemmer DE, Pelton JG J Mol Biol. 2000 Mar 31;297(3):543-51. PMID:10731410[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Cho HS, Lee SY, Yan D, Pan X, Parkinson JS, Kustu S, Wemmer DE, Pelton JG. NMR structure of activated CheY. J Mol Biol. 2000 Mar 31;297(3):543-51. PMID:10731410 doi:10.1006/jmbi.2000.3595