Structural highlights
Function
[CDC42_HUMAN] Plasma membrane-associated small GTPase which cycles between an active GTP-bound and an inactive GDP-bound state. In active state binds to a variety of effector proteins to regulate cellular responses. Involved in epithelial cell polarization processes. Regulates the bipolar attachment of spindle microtubules to kinetochores before chromosome congression in metaphase. Plays a role in the extension and maintenance of the formation of thin, actin-rich surface projections called filopodia. Mediates CDC42-dependent cell migration.[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The Escherichia coli type III effector Map belongs to a large family of bacterial virulence factors that activate host Rho GTPase signaling pathways through an unknown molecular mechanism. Here we report direct evidence that Map functions as a potent and selective guanine-nucleotide exchange factor (GEF) for Cdc42. The 2.3-A structure of the Map-Cdc42 complex revealed that Map mimics the GEF strategy of the mammalian Dbl family but has a three-dimensional architecture that is nearly identical to the bacterial GEF Salmonella spp. SopE. A comparative analysis between human and bacterial GEFs revealed a previously uncharacterized pairing mechanism between Map and the variable beta2-3 interswitch region of Cdc42. We propose a GTPase selection model that is experimentally validated by the preferential activation Rac1 and RhoA by the Shigella spp. effectors IpgB1 and IpgB2, respectively. These results significantly expand the repertoire of bacterial GEF mimics and unify a GEF selection mechanism for host GTPase substrates.
Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics.,Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, Feng Y, Chai J, Alto NM Nat Struct Mol Biol. 2009 Aug;16(8):853-60. Epub 2009 Jul 20. PMID:19620963[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Gauthier-Campbell C, Bredt DS, Murphy TH, El-Husseini Ael-D. Regulation of dendritic branching and filopodia formation in hippocampal neurons by specific acylated protein motifs. Mol Biol Cell. 2004 May;15(5):2205-17. Epub 2004 Feb 20. PMID:14978216 doi:10.1091/mbc.E03-07-0493
- ↑ Oceguera-Yanez F, Kimura K, Yasuda S, Higashida C, Kitamura T, Hiraoka Y, Haraguchi T, Narumiya S. Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis. J Cell Biol. 2005 Jan 17;168(2):221-32. Epub 2005 Jan 10. PMID:15642749 doi:10.1083/jcb.200408085
- ↑ Modzelewska K, Newman LP, Desai R, Keely PJ. Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J Biol Chem. 2006 Dec 8;281(49):37527-35. Epub 2006 Oct 12. PMID:17038317 doi:10.1074/jbc.M604342200
- ↑ Huang Z, Sutton SE, Wallenfang AJ, Orchard RC, Wu X, Feng Y, Chai J, Alto NM. Structural insights into host GTPase isoform selection by a family of bacterial GEF mimics. Nat Struct Mol Biol. 2009 Aug;16(8):853-60. Epub 2009 Jul 20. PMID:19620963 doi:10.1038/nsmb.1647