1t5f
From Proteopedia
arginase I-AOH complex
Structural highlights
Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedArginase is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of l-arginine to form l-ornithine and urea. Chiral L-amino acids bearing aldehyde side chains have been synthesized in which the electrophilic aldehyde C=O bond is isosteric with the C=N bond of L-arginine. This substitution is intended to facilitate nucleophilic attack by the metal-bridging hydroxide ion upon binding to the arginase active site. Syntheses of the amino acid aldehydes have been accomplished by reduction, oxidation, and Wittig-type reaction with a commercially available derivative of L-glutamic acid. Amino acid aldehydes exhibit inhibition in the micromolar range, and the X-ray crystal structure of arginase I complexed with one of these inhibitors, (S)-2-amino-7-oxoheptanoic acid, has been determined at 2.2 A resolution. In the enzyme-inhibitor complex, the inhibitor aldehyde moiety is hydrated to form the gem-diol: one hydroxyl group bridges the Mn(2+)(2) cluster and donates a hydrogen bond to D128, and the second hydroxyl group donates a hydrogen bond to E277. The binding mode of the neutral gem-diol may mimic the binding of the neutral tetrahedral intermediate and its flanking transition states in arginase catalysis. Design of amino acid aldehydes as transition-state analogue inhibitors of arginase.,Shin H, Cama E, Christianson DW J Am Chem Soc. 2004 Aug 25;126(33):10278-84. PMID:15315440[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Arginase | Rattus norvegicus | Cama, E | Christianson, D W | Shin, H | Aoh | Hydrolase