Structural highlights
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Hsp90 chaperones play a critical role in modulating the activity of many cell signaling proteins and are an attractive target for anti-cancer therapeutics. We report here the structures of the water soluble 8-aryl-sulfanyl adenine class Hsp90 inhibitors, 1 (PU-H71) and 2 (PU-H64), in complex with the N-terminal domain of human Hsp90alpha. The conformation of 1 when bound to Hsp90 differs from previously reported 8-aryl adenine Hsp90 inhibitors including 3 (PU24FCl). While the binding mode for 3 places the 2'-halide of the 8-aryl group on top of the adenine ring, for 1 and 2, we show that the 2'-halide is rotated approximately 180 degrees away. This difference explains the opposing trends in Hsp90 inhibitory activity for the 2'-halo derivatives of the 3',4',5'-trimethoxy series where Cl > Br > I compared to the 4',5'-methylenedioxy series where I > Br > Cl. We also present quantum chemical calculations of 2 and its analogues that illuminate their basis for Hsp90 inhibition. The calculated conformation of 2 agreed well with the crystallographically observed conformations of 1 and 2. The predictive nature of the calculations has allowed the exploration of additional derivatives based on the 8-aryl adenine scaffold.
Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors.,Immormino RM, Kang Y, Chiosis G, Gewirth DT J Med Chem. 2006 Aug 10;49(16):4953-60. PMID:16884307[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Immormino RM, Kang Y, Chiosis G, Gewirth DT. Structural and quantum chemical studies of 8-aryl-sulfanyl adenine class Hsp90 inhibitors. J Med Chem. 2006 Aug 10;49(16):4953-60. PMID:16884307 doi:10.1021/jm060297x