Structural highlights
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The three-dimensional structure of the catalytically efficient beta-xylosidase from Selenomonas ruminantium in complex with competitive inhibitor 1,3-bis[tris(hydroxymethyl)methylamino]propane (BTP) was determined by using X-ray crystallography (1.3A resolution). Most H bonds between inhibitor and protein occur within subsite -1, including one between the carboxyl group of E186 and an N group of BTP. The other N of BTP occupies subsite +1 near K99. E186 (pK(a) 7.2) serves as catalytic acid. The pH (6-10) profile for 1/K(i)((BTP)) is bell-shaped with pK(a)'s 6.8 and 7.8 on the acidic limb assigned to E186 and inhibitor groups and 9.9 on the basic limb assigned to inhibitor. Mutation K99A eliminates pK(a) 7.8, strongly suggesting that the BTP monocation binds to the dianionic enzyme D14(-)E186(-). A sedimentation equilibrium experiment estimates a K(d) ([dimer](2)/[tetramer]) of 7 x 10(-9)M. Similar k(cat) and k(cat)/K(m) values were determined when the tetramer/dimer ratio changes from 0.0028 to 26 suggesting that dimers and tetramers are equally active forms.
Structure of the two-subsite beta-d-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane.,Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z Arch Biochem Biophys. 2008 Jun 1;474(1):157-66. Epub 2008 Mar 14. PMID:18374656[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Brunzelle JS, Jordan DB, McCaslin DR, Olczak A, Wawrzak Z. Structure of the two-subsite beta-d-xylosidase from Selenomonas ruminantium in complex with 1,3-bis[tris(hydroxymethyl)methylamino]propane. Arch Biochem Biophys. 2008 Jun 1;474(1):157-66. Epub 2008 Mar 14. PMID:18374656 doi:http://dx.doi.org/10.1016/j.abb.2008.03.007