2pe6
From Proteopedia
Non-covalent complex between human SUMO-1 and human Ubc9
Structural highlights
Disease[SUMO1_HUMAN] Defects in SUMO1 are the cause of non-syndromic orofacial cleft type 10 (OFC10) [MIM:613705]; also called non-syndromic cleft lip with or without cleft palate 10. OFC10 is a birth defect consisting of cleft lips with or without cleft palate. Cleft lips are associated with cleft palate in two-third of cases. A cleft lip can occur on one or both sides and range in severity from a simple notch in the upper lip to a complete opening in the lip extending into the floor of the nostril and involving the upper gum. Note=A chromosomal aberation involving SUMO1 is the cause of OFC10. Translocation t(2;8)(q33.1;q24.3). The breakpoint occurred in the SUMO1 gene and resulted in haploinsufficiency confirmed by protein assays.[1] Function[UBC9_HUMAN] Accepts the ubiquitin-like proteins SUMO1, SUMO2, SUMO3 and SUMO4 from the UBLE1A-UBLE1B E1 complex and catalyzes their covalent attachment to other proteins with the help of an E3 ligase such as RANBP2 or CBX4. Can catalyze the formation of poly-SUMO chains. Necessary for sumoylation of FOXL2 and KAT5. Essential for nuclear architecture and chromosome segregation.[2] [3] [4] [5] [6] [7] [8] [SUMO1_HUMAN] Ubiquitin-like protein that can be covalently attached to proteins as a monomer or a lysine-linked polymer. Covalent attachment via an isopeptide bond to its substrates requires prior activation by the E1 complex SAE1-SAE2 and linkage to the E2 enzyme UBE2I, and can be promoted by E3 ligases such as PIAS1-4, RANBP2 or CBX4. This post-translational modification on lysine residues of proteins plays a crucial role in a number of cellular processes such as nuclear transport, DNA replication and repair, mitosis and signal transduction. Involved for instance in targeting RANGAP1 to the nuclear pore complex protein RANBP2. Polymeric SUMO1 chains are also susceptible to polyubiquitination which functions as a signal for proteasomal degradation of modified proteins. May also regulate a network of genes involved in palate development.[9] [10] [11] [12] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe SUMO E2 Ubc9 serves as a lynchpin in the SUMO conjugation pathway, interacting with the SUMO E1 during activation, with thioester linked SUMO after E1 transfer and with the substrate and SUMO E3 ligases during conjugation. Here, we describe the structure determination of a non-covalent complex between human Ubc9 and SUMO-1 at 2.4 A resolution. Non-covalent interactions between Ubc9 and SUMO are conserved in human and yeast insomuch as human Ubc9 interacts with each of the human SUMO isoforms, and yeast Ubc9 interacts with Smt3, the yeast SUMO ortholog. Structural comparisons reveal similarities to several other non-covalent complexes in the ubiquitin pathway, suggesting that the non-covalent Ubc9-SUMO interface may be important for poly-SUMO chain formation, for E2 recruitment to SUMO conjugated substrates, or for mediating E2 interactions with either E1 or E3 ligases. Biochemical analysis suggests that this surface is less important for E1 activation or di-SUMO-2 formation, but more important for E3 interactions and for poly-SUMO chain formation when the chain exceeds more than two SUMO proteins. Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction.,Capili AD, Lima CD J Mol Biol. 2007 Jun 8;369(3):608-18. Epub 2007 Apr 6. PMID:17466333[13] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Human | Capili, A D | Lima, C D | Conjugation | Ligase | Protein binding | Smt3 | Sumo | Ubc9 | Ubiquitin-like