| Structural highlights
4epi is a 1 chain structure with sequence from "bacillus_pestis"_(lehmann_and_neumann_1896)_migula_1900 "bacillus pestis" (lehmann and neumann 1896) migula 1900. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , |
Related: | 4epa, 4epf, 4exm |
Gene: | pst, YP_pPCP06, YPPCP1.05c, E ("Bacillus pestis" (Lehmann and Neumann 1896) Migula 1900) |
Activity: | Lysozyme, with EC number 3.2.1.17 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Publication Abstract from PubMed
Bacterial pathogens are becoming increasingly resistant to antibiotics. As an alternative therapeutic strategy, phage therapy reagents containing purified viral lysins have been developed against Gram-positive organisms but not against Gram-negative organisms due to the inability of these types of drugs to cross the bacterial outer membrane. We solved the crystal structures of a Yersinia pestis outer membrane transporter called FyuA and a bacterial toxin called pesticin that targets this transporter. FyuA is a beta-barrel membrane protein belonging to the family of TonB dependent transporters, whereas pesticin is a soluble protein with two domains, one that binds to FyuA and another that is structurally similar to phage T4 lysozyme. The structure of pesticin allowed us to design a phage therapy reagent comprised of the FyuA binding domain of pesticin fused to the N-terminus of T4 lysozyme. This hybrid toxin kills specific Yersinia and pathogenic E. coli strains and, importantly, can evade the pesticin immunity protein (Pim) giving it a distinct advantage over pesticin. Furthermore, because FyuA is required for virulence and is more common in pathogenic bacteria, the hybrid toxin also has the advantage of targeting primarily disease-causing bacteria rather than indiscriminately eliminating natural gut flora.
Structural engineering of a phage lysin that targets Gram-negative pathogens.,Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, Buchanan SK Proc Natl Acad Sci U S A. 2012 Jun 7. PMID:22679291[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman JW, Noinaj N, Kirby TL, Henderson JP, Steven AC, Hinnebusch BJ, Buchanan SK. Structural engineering of a phage lysin that targets Gram-negative pathogens. Proc Natl Acad Sci U S A. 2012 Jun 7. PMID:22679291 doi:10.1073/pnas.1203472109
|