We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
CRISPR-Cas Part II
From Proteopedia
| |||||||||||
References
- ↑ Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun. 2012 Jul 10;3:945. doi: 10.1038/ncomms1937. PMID:22781758 doi:http://dx.doi.org/10.1038/ncomms1937
- ↑ 2.0 2.1 2.2 Li M, Wang R, Zhao D, Xiang H. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res. 2014 Feb;42(4):2483-92. doi: 10.1093/nar/gkt1154. Epub 2013, Nov 21. PMID:24265226 doi:http://dx.doi.org/10.1093/nar/gkt1154
- ↑ Richter C, Dy RL, McKenzie RE, Watson BN, Taylor C, Chang JT, McNeil MB, Staals RH, Fineran PC. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. 2014 Jul;42(13):8516-26. doi: 10.1093/nar/gku527. Epub 2014, Jul 2. PMID:24990370 doi:http://dx.doi.org/10.1093/nar/gku527
- ↑ 4.0 4.1 Fineran PC, Gerritzen MJ, Suarez-Diez M, Kunne T, Boekhorst J, van Hijum SA, Staals RH, Brouns SJ. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1629-38. doi:, 10.1073/pnas.1400071111. Epub 2014 Apr 7. PMID:24711427 doi:http://dx.doi.org/10.1073/pnas.1400071111
- ↑ Xue C, Seetharam AS, Musharova O, Severinov K, Brouns SJ, Severin AJ, Sashital DG. CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res. 2015 Dec 15;43(22):10831-47. doi: 10.1093/nar/gkv1259. Epub, 2015 Nov 19. PMID:26586800 doi:http://dx.doi.org/10.1093/nar/gkv1259
- ↑ 6.0 6.1 Vorontsova D, Datsenko KA, Medvedeva S, Bondy-Denomy J, Savitskaya EE, Pougach K, Logacheva M, Wiedenheft B, Davidson AR, Severinov K, Semenova E. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery. Nucleic Acids Res. 2015 Dec 15;43(22):10848-60. doi: 10.1093/nar/gkv1261. Epub, 2015 Nov 19. PMID:26586803 doi:http://dx.doi.org/10.1093/nar/gkv1261
- ↑ 7.0 7.1 Ivancic-Bace I, Cass SD, Wearne SJ, Bolt EL. Different genome stability proteins underpin primed and naive adaptation in E. coli CRISPR-Cas immunity. Nucleic Acids Res. 2015 Dec 15;43(22):10821-30. doi: 10.1093/nar/gkv1213. Epub, 2015 Nov 17. PMID:26578567 doi:http://dx.doi.org/10.1093/nar/gkv1213
- ↑ 8.0 8.1 8.2 8.3 Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science. 2016 Aug 5;353(6299):aad5147. doi: 10.1126/science.aad5147. PMID:27493190 doi:http://dx.doi.org/10.1126/science.aad5147
- ↑ Hochstrasser ML, Doudna JA. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci. 2015 Jan;40(1):58-66. doi: 10.1016/j.tibs.2014.10.007. Epub, 2014 Nov 18. PMID:25468820 doi:http://dx.doi.org/10.1016/j.tibs.2014.10.007
Categories: Topic Page | Crispr | Crispr-associated | Endonuclease | Cas9 | Cas6
