| Structural highlights
5vl0 is a 4 chain structure with sequence from Equus caballus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , |
Related: | 1u3u, 1p1r, 1ldy, 1lde, 5vj5, 5vjg, 5vkr |
Activity: | Alcohol dehydrogenase, with EC number 1.1.1.1 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Publication Abstract from PubMed
During catalysis by liver alcohol dehydrogenase (ADH), a water bound to the catalytic zinc is replaced by the oxygen of the substrates. The mechanism might involve a pentacoordinated zinc or a double-displacement reaction with participation by a nearby glutamate residue, as suggested by studies of human ADH3, yeast ADH1, and some other tetrameric ADHs. Zinc coordination and participation of water in the enzyme mechanism were investigated by X-ray crystallography. The apoenzyme and its complex with adenosine 5'-diphosphoribose have an open protein conformation with the catalytic zinc in one position, tetracoordinated by Cys-46, His-67, Cys-174, and a water molecule. The bidentate chelators 2,2'-bipyridine and 1,10-phenanthroline displace the water and form a pentacoordinated zinc. The enzyme-NADH complex has a closed conformation similar to that of ternary complexes with coenzyme and substrate analogues; the coordination of the catalytic zinc is similar to that found in the apoenzyme, except that a minor, alternative position for the catalytic zinc is approximately 1.3 A from the major position and closer to Glu-68, which could form the alternative coordination to the catalytic zinc. Complexes with NADH and N-1-methylhexylformamide or N-benzylformamide (or with NAD+ and fluoro alcohols) have the classical tetracoordinated zinc, and no water is bound to the zinc or the nicotinamide rings. The major forms of the enzyme in the mechanism have a tetracoordinated zinc, where the carboxylate group of Glu-68 could participate in the exchange of water and substrates on the zinc. Hydride transfer in the Michaelis complexes does not involve a nearby water.
Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis.,Plapp BV, Savarimuthu BR, Ferraro DJ, Rubach JK, Brown EN, Ramaswamy S Biochemistry. 2017 Jul 18;56(28):3632-3646. doi: 10.1021/acs.biochem.7b00446., Epub 2017 Jul 7. PMID:28640600[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Plapp BV, Savarimuthu BR, Ferraro DJ, Rubach JK, Brown EN, Ramaswamy S. Horse Liver Alcohol Dehydrogenase: Zinc Coordination and Catalysis. Biochemistry. 2017 Jul 18;56(28):3632-3646. doi: 10.1021/acs.biochem.7b00446., Epub 2017 Jul 7. PMID:28640600 doi:http://dx.doi.org/10.1021/acs.biochem.7b00446
|