Structural highlights
3cgo is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
|
Ligands: | |
Related: | 2p33, 3cgf |
Gene: | MAPK10, JNK3, JNK3A, PRKM10 (Homo sapiens) |
Activity: | Mitogen-activated protein kinase, with EC number 2.7.11.24 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
[MK10_HUMAN] Defects in MAPK10 are a cause of epileptic encephalopathy Lennox-Gastaut type (EELG) [MIM:606369]. Epileptic encephalopathies of the Lennox-Gastaut group are childhood epileptic disorders characterized by severe psychomotor delay and seizures. Note=A chromosomal aberration involving MAPK10 has been found in a single patient. Translocation t(Y;4)(q11.2;q21) which causes MAPK10 truncation.
Function
[MK10_HUMAN] Serine/threonine-protein kinase involved in various processes such as neuronal proliferation, differentiation, migration and programmed cell death. Extracellular stimuli such as proinflammatory cytokines or physical stress stimulate the stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) signaling pathway. In this cascade, two dual specificity kinases MAP2K4/MKK4 and MAP2K7/MKK7 phosphorylate and activate MAPK10/JNK3. In turn, MAPK10/JNK3 phosphorylates a number of transcription factors, primarily components of AP-1 such as JUN and ATF2 and thus regulates AP-1 transcriptional activity. Plays regulatory roles in the signaling pathways during neuronal apoptosis. Phosphorylates the neuronal microtubule regulator STMN2. Acts in the regulation of the beta-amyloid precursor protein/APP signaling during neuronal differentiation by phosphorylating APP. Participates also in neurite growth in spiral ganglion neurons.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
A potent IRAK-4 inhibitor was identified through routine project cross screening. The binding mode was inferred using a combination of in silico docking into an IRAK-4 homology model, surrogate crystal structure analysis and chemical analogue SAR.
IRAK-4 inhibitors. Part II: a structure-based assessment of imidazo[1,2-a]pyridine binding.,Buckley GM, Ceska TA, Fraser JL, Gowers L, Groom CR, Higueruelo AP, Jenkins K, Mack SR, Morgan T, Parry DM, Pitt WR, Rausch O, Richard MD, Sabin V Bioorg Med Chem Lett. 2008 Jun 1;18(11):3291-5. Epub 2008 Apr 22. PMID:18482836[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Neidhart S, Antonsson B, Gillieron C, Vilbois F, Grenningloh G, Arkinstall S. c-Jun N-terminal kinase-3 (JNK3)/stress-activated protein kinase-beta (SAPKbeta) binds and phosphorylates the neuronal microtubule regulator SCG10. FEBS Lett. 2001 Nov 16;508(2):259-64. PMID:11718727
- ↑ Buckley GM, Ceska TA, Fraser JL, Gowers L, Groom CR, Higueruelo AP, Jenkins K, Mack SR, Morgan T, Parry DM, Pitt WR, Rausch O, Richard MD, Sabin V. IRAK-4 inhibitors. Part II: a structure-based assessment of imidazo[1,2-a]pyridine binding. Bioorg Med Chem Lett. 2008 Jun 1;18(11):3291-5. Epub 2008 Apr 22. PMID:18482836 doi:10.1016/j.bmcl.2008.04.039