Alpha helix
From Proteopedia
Contents |
Structure, hydrogen bonding and composition
| |||||||||||
Types of proteins and folds that contain alpha helices
Alpha helices in soluble (globular) proteins
Example: myoglobin Example: helical DNA binding domains
Alpha helices in transmembrane proteins
A common fold found in transmembrane proteins are alpha-helical bundles running from one side to the other side of the membrane. An alpha helix of 19 amino acids (with a length of about 30 angstroms) has the right size to cross the double-layer of a typical membrane. If the helix runs at an angle instead of perfectly perpendicular to the membrane, it has to be a bit longer. There is a write-up on opioid receptiors that illustrates this fold in the Molecule of the Month series by David Goodsell (http://pdb101.rcsb.org/motm/217).
Alpha helices in coiled coils
Experimental evidence
There are multiple spectroscopic techniques that allow the detection of alpha helices in proteins without determining their three-dimensional structures
a) CD spectroscopy This method uses the so-called circular dichroism (CD) of proteins to estimate the content of alpha helical segments in a sample. The CD effect works because proteins are chiral (they and their mirror image are different, just like our hands). Depending on the conformation of the main chain, different spectra characteristic for alpha helices or other secondary structures are observed. For more information, take a look at the Birkbeck's PPS2 course. In a similar way, infrared spectroscopy can be used to estimate alpha helical content.
b) NMR chemical shifts Nuclear magnetic resonance spectroscopy measures magnetic properties of the nuclei of atoms. One of these properties, the so-called chemical shift, changes slightly depending on the chemical environment an atom is in. By measuring the chemical shift of the alpha and beta carbon in each amino acid residue, it is possible to predict the secondary structure the residue is part of.
Role of alpha helices in the history of structural biology
a) While the chemical (primary) structure of proteins was known for some time, the conformation of proteins was not known until the first protein structures were solved by X-ray crystallography in 1958 (myoglobin) and in the 1960s. However, using the X-ray diffraction pattern of alpha keratin (found, for example, in horse hair) and chemical insight gained from structures of smaller molecules (e.g. the peptide plane resulting from the partial double bond character of the peptide bond, the geometry of hydrogen bonds), Pauling predicted the structure of the alpha helix correctly years earlier (paper1 and paper2 and picture.
b) Determination of hand: There are several methods in X-ray crystallography where crystallographers obtain an electron density, but don't know whether it or its mirror image is correct. Historically, finding electron density that fits a helix was used to break this ambiguity. If the helix was right-handed, the electron density was used as is, but if the helix was left-handed, the mirror image was used.
c) Tracing the chain: When building a model into electron density, the first step was to place contiguous C-alpha atoms into the density (with proper spacing). To see in which direction an alpha helix goes, you look at the side chain density. If it points up, the N-terminus is on top, otherwise on the bottom. (search for Christmas tree in this course)
