1y51
From Proteopedia
X-ray crystal structure of Bacillus stearothermophilus Histidine phosphocarrier protein (Hpr) F29W mutant
Structural highlights
Function[PTHP_GEOSE] General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the permease (enzymes II/III). P-Ser-HPr interacts with the catabolite control protein A (CcpA), forming a complex that binds to DNA at the catabolite response elements cre, operator sites preceding a large number of catabolite-regulated genes. Thus, P-Ser-HPr is a corepressor in carbon catabolite repression (CCR), a mechanism that allows bacteria to coordinate and optimize the utilization of available carbon sources. P-Ser-HPr also plays a role in inducer exclusion, in which it probably interacts with several non-PTS permeases and inhibits their transport activity (By similarity). Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar to the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B.subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods. The HPr proteins from the thermophile Bacillus stearothermophilus can form domain-swapped dimers.,Sridharan S, Razvi A, Scholtz JM, Sacchettini JC J Mol Biol. 2005 Feb 25;346(3):919-31. Epub 2004 Dec 23. PMID:15713472[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|