2q5h
From Proteopedia
Crystal structure of apo-wildtype Glycyl-tRNA synthetase
Structural highlights
Disease[SYG_HUMAN] Defects in GARS are the cause of Charcot-Marie-Tooth disease type 2D (CMT2D) [MIM:601472]. CMT2D is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Charcot-Marie-Tooth disease is classified in two main groups on the basis of electrophysiologic properties and histopathology: primary peripheral demyelinating neuropathy or CMT1, and primary peripheral axonal neuropathy or CMT2. Neuropathies of the CMT2 group are characterized by signs of axonal regeneration in the absence of obvious myelin alterations, normal or slightly reduced nerve conduction velocities, and progressive distal muscle weakness and atrophy. CMT2D is characterized by a more severe phenotype in the upper extremities (severe weakness and atrophy, absence of tendon reflexes) than in the lower limbs. CMT2D inheritance is autosomal dominant.[1] Defects in GARS are a cause of distal hereditary motor neuronopathy type 5A (HMN5A) [MIM:600794]; also known as distal hereditary motor neuropathy type V (DSMAV). A disorder characterized by distal muscular atrophy mainly affecting the upper extremities, in contrast to other distal motor neuronopathies. These constitute a heterogeneous group of neuromuscular diseases caused by selective degeneration of motor neurons in the anterior horn of the spinal cord, without sensory deficit in the posterior horn. The overall clinical picture consists of a classical distal muscular atrophy syndrome in the legs without clinical sensory loss. The disease starts with weakness and wasting of distal muscles of the anterior tibial and peroneal compartments of the legs. Later on, weakness and atrophy may expand to the proximal muscles of the lower limbs and/or to the distal upper limbs.[2] Function[SYG_HUMAN] Catalyzes the attachment of glycine to tRNA(Gly). Is also able produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs.[3] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedDominant mutations in the ubiquitous enzyme glycyl-tRNA synthetase (GlyRS), including S581L, lead to motor nerve degeneration. We have determined crystal structures of wildtype and S581L-mutant human GlyRS. The S581L mutation is approximately 50A from the active site, and yet gives reduced aminoacylation activity. The overall structures of wildtype and S581L-GlyRS, including the active site, are very similar. However, residues 567-575 of the anticodon-binding domain shift position and in turn could indirectly affect glycine binding via the tRNA or alternatively inhibit conformational changes. Reduced enzyme activity may underlie neuronal degeneration, although a dominant-negative effect is more likely in this autosomal dominant disorder. Crystal structure of human wildtype and S581L-mutant glycyl-tRNA synthetase, an enzyme underlying distal spinal muscular atrophy.,Cader MZ, Ren J, James PA, Bird LE, Talbot K, Stammers DK FEBS Lett. 2007 Jun 26;581(16):2959-64. Epub 2007 May 29. PMID:17544401[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|