3c4m
From Proteopedia
Structure of human parathyroid hormone in complex with the extracellular domain of its G-protein-coupled receptor (PTH1R)
Overview
Parathyroid hormone (PTH) is central to calcium homeostasis and bone maintenance in vertebrates, and as such it has been used for treating osteoporosis. It acts primarily by binding to its receptor, PTH1R, a member of the class B G protein-coupled receptor (GPCR) family that also includes receptors for glucagon, calcitonin, and other therapeutically important peptide hormones. Despite considerable interest and much research, determining the structure of the receptor-hormone complex has been hindered by difficulties in purifying the receptor and obtaining diffraction-quality crystals. Here, we present a method for expression and purification of the extracellular domain (ECD) of human PTH1R engineered as a maltose-binding protein (MBP) fusion that readily crystallizes. The 1.95-A structure of PTH bound to the MBP-PTH1R-ECD fusion reveals that PTH docks as an amphipathic helix into a central hydrophobic groove formed by a three-layer alpha-beta-betaalpha fold of the PTH1R ECD, resembling a hot dog in a bun. Conservation in the ECD scaffold and the helical structure of peptide hormones emphasizes this hot dog model as a general mechanism of hormone recognition common to class B GPCRs. Our findings reveal critical insights into PTH actions and provide a rational template for drug design that targets this hormone signaling pathway.
About this Structure
3C4M is a Protein complex structure of sequences from Escherichia coli, homo sapiens. Full crystallographic information is available from OCA.
Reference
Molecular recognition of parathyroid hormone by its G protein-coupled receptor., Pioszak AA, Xu HE, Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5034-9. Epub 2008 Mar 28. PMID:18375760
Categories: Escherichia coli, homo sapiens | Protein complex | Pioszak, A A. | Xu, H E. | Cleavage on pair of basic residue | Disease mutation | Dwarfism | G-protein-coupled receptor | Glycoprotein | Membrane | Membrane protein | Parathyroid hormone | Periplasm | Receptor | Secreted | Signal | Sugar transport | Transducer | Transmembrane | Transport