| Structural highlights
4s1y is a 1 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | |
Related: | 1hk1 |
Gene: | ALB, GIG20, GIG42, PRO0903, PRO1708, PRO2044, PRO2619, PRO2675, UNQ696/PRO1341 (HUMAN) |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
[ALBU_HUMAN] Defects in ALB are a cause of familial dysalbuminemic hyperthyroxinemia (FDH) [MIM:103600]. FDH is a form of euthyroid hyperthyroxinemia that is due to increased affinity of ALB for T(4). It is the most common cause of inherited euthyroid hyperthyroxinemia in Caucasian population.[1] [2] [3] [4]
Function
[ALBU_HUMAN] Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc.[5]
Publication Abstract from PubMed
The reaction between cisplatin and human serum albumin (HSA) was investigated by X-ray crystallography and crystal structures of the cisplatin/HSA adduct were eventually solved for the first time. Structural data unambiguously prove that cisplatin mainly binds to His105 and Met329 side chains; additional binding sites are detected at His288, Met298, and Met548 and at His535, His67 and His247.
Cisplatin binding to human serum albumin: a structural study.,Ferraro G, Massai L, Messori L, Merlino A Chem Commun (Camb). 2015 Apr 15. PMID:25873085[6]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Sunthornthepvarakul T, Angkeow P, Weiss RE, Hayashi Y, Refetoff S. An identical missense mutation in the albumin gene results in familial dysalbuminemic hyperthyroxinemia in 8 unrelated families. Biochem Biophys Res Commun. 1994 Jul 29;202(2):781-7. PMID:8048949
- ↑ Rushbrook JI, Becker E, Schussler GC, Divino CM. Identification of a human serum albumin species associated with familial dysalbuminemic hyperthyroxinemia. J Clin Endocrinol Metab. 1995 Feb;80(2):461-7. PMID:7852505
- ↑ Wada N, Chiba H, Shimizu C, Kijima H, Kubo M, Koike T. A novel missense mutation in codon 218 of the albumin gene in a distinct phenotype of familial dysalbuminemic hyperthyroxinemia in a Japanese kindred. J Clin Endocrinol Metab. 1997 Oct;82(10):3246-50. PMID:9329347
- ↑ Sunthornthepvarakul T, Likitmaskul S, Ngowngarmratana S, Angsusingha K, Kitvitayasak S, Scherberg NH, Refetoff S. Familial dysalbuminemic hypertriiodothyroninemia: a new, dominantly inherited albumin defect. J Clin Endocrinol Metab. 1998 May;83(5):1448-54. PMID:9589637
- ↑ Lu J, Stewart AJ, Sadler PJ, Pinheiro TJ, Blindauer CA. Albumin as a zinc carrier: properties of its high-affinity zinc-binding site. Biochem Soc Trans. 2008 Dec;36(Pt 6):1317-21. doi: 10.1042/BST0361317. PMID:19021548 doi:10.1042/BST0361317
- ↑ Ferraro G, Massai L, Messori L, Merlino A. Cisplatin binding to human serum albumin: a structural study. Chem Commun (Camb). 2015 Apr 15. PMID:25873085 doi:http://dx.doi.org/10.1039/c5cc01751c
|