Structural highlights
Function
[NEPU2_THEVU] Hydrolyzes pullulan efficiently but only a small amount of starch. Endohydrolysis of 1,4-alpha-glucosidic linkages in pullulan to form panose. Cleaves also (1-6)-alpha-glucosidic linkages to form maltotriose.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Crystals of the mutant E354A of Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII) complexed with beta-cyclodextrin were prepared by a soaking method, and the diffraction data were collected at 100 K, using Synchrotron radiation (SPring-8). The crystals belong to an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions a = 111.1 A, b = 117.7 A, c = 113.3 A, which is almost isomorphous with crystals of the wild-type TVAII, and the structure was refined to an R-factor = 0.208 (R(free) = 0.252) using 3.0 A resolution data. The refined structure shows that the interactions between Phe286 and two C6 atoms of beta-cyclodextrin at the hydrolyzing site are important for TVAII to recognize cyclodextrins as substrates. This observation from the X-ray structure was supported by kinetic analyses of cyclodextrins using the wild-type TVAII, the mutant F286A and F286L. These studies also suggested that the TVAII-hydrolyzing mechanism for cyclodextrins is slightly different from that for starch.
Studies on the hydrolyzing mechanism for cyclodextrins of Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII). X-ray structure of the mutant E354A complexed with beta-cyclodextrin, and kinetic analyses on cyclodextrins.,Kondo S, Ohtaki A, Tonozuka T, Sakano Y, Kamitori S J Biochem. 2001 Mar;129(3):423-8. PMID:11226882[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kondo S, Ohtaki A, Tonozuka T, Sakano Y, Kamitori S. Studies on the hydrolyzing mechanism for cyclodextrins of Thermoactinomyces vulgaris R-47 alpha-amylase 2 (TVAII). X-ray structure of the mutant E354A complexed with beta-cyclodextrin, and kinetic analyses on cyclodextrins. J Biochem. 2001 Mar;129(3):423-8. PMID:11226882