2fj7
From Proteopedia
Crystal structure of Nucleosome Core Particle Containing a Poly (dA.dT) Sequence Element
Structural highlights
Function[H2B11_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [H4_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPoly(dA.dT) DNA sequence elements are thought to promote transcription by either excluding nucleosomes or by altering their structural or dynamic properties. Here, the stability and structure of a defined nucleosome core particle containing a 16 base-pair poly(dA.dT) element (A16 NCP) was investigated. The A16 NCP requires a significantly higher temperature for histone octamer sliding in vitro compared to comparable nucleosomes that do not contain a poly(dA.dT) element. Fluorescence resonance energy transfer showed that the interactions between the nucleosomal DNA ends and the histone octamer were destabilized in A16 NCP. The crystal structure of A16 NCP was determined to a resolution of 3.2 A. The overall structure was maintained except for local deviations in DNA conformation. These results are consistent with previous in vivo and in vitro observations that poly(dA.dT) elements cause only modest changes in DNA accessibility and modest increases in steady-state transcription levels. Nucleosome core particles containing a poly(dA.dT) sequence element exhibit a locally distorted DNA structure.,Bao Y, White CL, Luger K J Mol Biol. 2006 Aug 25;361(4):617-24. Epub 2006 Jul 5. PMID:16860337[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|