Structural highlights
Function
[ASIA_BPT4] Transcriptional inhibitor. Inhibits sigma 70-directed transcription by weakening its interaction with the core of the host's RNA polymerase. This allows Gp55 to successfully compete for the core enzyme. Plays an important role during the prereplicative period of phage T4 development.[1] [2] [RPOC_ECOLI] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01322] [MOTA_BPT4] Required for the transcriptional activation of middle promoters. Middle promoters are characterized by the presence of the conserved sequence [AT]3TGCTTNA (MotA box). MotA binds directly to MotA boxes. [RPOB_ECOLI] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01321] [RPOA_ECOLI] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme.[HAMAP-Rule:MF_00059] [RPOZ_ECOLI] Promotes RNA polymerase assembly. Latches the N- and C-terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.[HAMAP-Rule:MF_00366] [RPOD_ECOLI] Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This is the primary sigma factor of this bacterium.
References
- ↑ Ouhammouch M, Orsini G, Brody EN. The asiA gene product of bacteriophage T4 is required for middle mode RNA synthesis. J Bacteriol. 1994 Jul;176(13):3956-65. PMID:8021178
- ↑ Lambert LJ, Wei Y, Schirf V, Demeler B, Werner MH. T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. EMBO J. 2004 Aug 4;23(15):2952-62. Epub 2004 Jul 15. PMID:15257291 doi:10.1038/sj.emboj.7600312