1ej9
From Proteopedia
CRYSTAL STRUCTURE OF HUMAN TOPOISOMERASE I DNA COMPLEX
Structural highlights
Disease[TOP1_HUMAN] Note=A chromosomal aberration involving TOP1 is found in a form of therapy-related myelodysplastic syndrome. Translocation t(11;20)(p15;q11) with NUP98. Function[TOP1_HUMAN] Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand thus removing DNA supercoils. Finally, in the religation step, the DNA 5'-OH attacks the covalent intermediate to expel the active-site tyrosine and restore the DNA phosphodiester backbone (By similarity). Regulates the alternative splicing of tissue factor (F3) pre-mRNA in endothelial cells.[1] [2] [3] [4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHuman topoisomerase I helps to control the level of DNA supercoiling in cells and is vital for numerous DNA metabolic events, including replication, transcription, and recombination. The 2.6 A crystal structure of human topoisomerase I in noncovalent complex with a DNA duplex containing a cytosine at the -1 position of the scissile strand rather than the favored thymine is reported. The hydrogen bond between the O2 position of this -1 base and the epsilon-amino of the conserved Lys-532 residue, the only base-specific contact observed previously in the human topoisomerase I-DNA interaction, is maintained in this complex. Several unique features of this structure, however, have implications for the DNA-binding and active-site mechanisms of the enzyme. First, the ends of the DNA duplex were observed to shift by up to 5.4 A perpendicular to the DNA helical axis relative to structures reported previously, suggesting a novel degree of plasticity in the interaction between human topoisomerase I and its DNA substrate. Second, 12 additional residues at the NH(2) terminus of the protein (Trp-203-Gly-214) could be built in this structure, and they were found to pack against the putative hinge region implicated in the clamping of the enzyme around duplex DNA. Third, a water molecule was observed adjacent to the scissile phosphate and the active-site residues; the potential specific base character of this solvent molecule in the active-site mechanism of the enzyme is discussed. Fourth, the scissile phosphate group was found to be rotated by 75 degrees, bringing Lys-532 into hydrogen-bonding distance of one of the nonbridging phosphate oxygens. This orientation of the scissile phosphate group implicates Lys-532 as a fifth active-site residue, and also mimics the orientation observed for the 3'-phosphotyrosine linkage in the covalent human topoisomerase I-DNA complex structure. The implications of these structural features for the mechanism of the enzyme are discussed, including the potential requirement for a rotation of the scissile phosphate group during DNA strand cleavage and covalent attachment. Novel insights into catalytic mechanism from a crystal structure of human topoisomerase I in complex with DNA.,Redinbo MR, Champoux JJ, Hol WG Biochemistry. 2000 Jun 13;39(23):6832-40. PMID:10841763[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|