Sandbox Reserved 1109

From Proteopedia

Revision as of 23:55, 16 January 2020 by Bachar Almazloum (Talk | contribs)
Jump to: navigation, search
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Generalities

PDB ID 6flt

Drag the structure with the mouse to rotate

References

Bendor, J. T., Logan, T. P., & Edwards, R. H. (2013). The function of α-synuclein. Neuron, 79(6), 1044–1066. doi:10.1016/j.neuron.2013.09.004 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866954/

Cold Spring Harb Perspect Med 2012;4:a009399, Stefanis L.a-Synuclein in Parkinson’s Disease . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281589/pdf/cshperspectmed-PKD-a009399.pdf

UniProtKB - P37840 (SYUA_HUMAN) https://www.uniprot.org/uniprot/P37840

https://www.parkinson.org/Understanding-Parkinsons/Statistics https://doi.org/10.1038/35081564 PMID: 954634 https://doi.org/10.1038/nm0602-600

  1. Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
  2. Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G, Sawaya MR, Shin WS, Boyer DR, Ye S, Eisenberg DS, Zhou ZH, Jiang L. Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun. 2018 Sep 6;9(1):3609. doi: 10.1038/s41467-018-05971-2. PMID:30190461 doi:http://dx.doi.org/10.1038/s41467-018-05971-2
  3. Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
  4. https://www.parkinson.org/Understanding-Parkinsons/Statistics<r/ef>. One of the main characteristics of Neurodegenerative disorders is the loss of the protective capacity surrounding the neurons or the gain of the toxic proteins. The mechanism by which the neuronal damage occurs is due to specific mutations, or other alterations of the synaptic proteins. Recently, it has been found that α-synuclein protein is the main component of Lewy bodies and Lewy neurites which are defining pathological characteristics of all Parkinson's disease cases. <ref>https://doi.org/10.1038/35081564</li> <li id="cite_note-4">[[#cite_ref-4|↑]] PMID: 9546347<ref> Lewy Bodies are cytoplasmic inclusion made of primarily α-synuclein protein, and may also contain other proteins such as; ubiquitin, Tau proteins. The structure of α-synuclein; N-terminal domain, C-terminal domain, and a hydrophobic core (NAC) suggests an aggregation pathway due to the unfolded nature of the protein. In a recent study published by the in Science Translational medicine <ref>doi: 10.1126/scitranslmed.3002566</li> <li id="cite_note-5">[[#cite_ref-5|↑]] https://doi.org/10.1038/nm0602-600</li></ol></ref>
Personal tools