6li3
From Proteopedia
cryo-EM structure of GPR52-miniGs-NB35
Structural highlights
Disease[GNAS2_HUMAN] Pseudopseudohypoparathyroidism;Pseudohypoparathyroidism type 1A;Progressive osseous heteroplasia;Polyostotic fibrous dysplasia;Monostotic fibrous dysplasia;Pseudohypoparathyroidism type 1C;Pseudohypoparathyroidism type 1B;McCune-Albright syndrome. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. Most affected individuals have defects in methylation of the gene. In some cases microdeletions involving the STX16 appear to cause loss of methylation at exon A/B of GNAS, resulting in PHP1B. Paternal uniparental isodisomy have also been observed. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. Function[GBG2_HUMAN] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (By similarity). [GPR52_HUMAN] Gs-coupled receptor activated by antipsychotics reserpine leading to an increase in intracellular cAMP and its internalization (PubMed:24587241). May play a role in locomotor activity through modulation of dopamine, NMDA and ADORA2A-induced locomotor activity. These behavioral changes are accompanied by modulation of the dopamine receptor signaling pathway in striatum (PubMed:24587241). Modulates HTT level via cAMP-dependent but PKA independent mechanisms throught activation of RAB39B that translocates HTT to the endoplasmic reticulum, thus avoiding proteasome degradation (PubMed:25738228).[1] [2] [GBB1_HUMAN] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction.[3] [GNAS2_HUMAN] Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs) (PubMed:17110384). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP (PubMed:26206488, PubMed:8702665). GNAS functions downstream of several GPCRs, including beta-adrenergic receptors (PubMed:21488135). Stimulates the Ras signaling pathway via RAPGEF2 (PubMed:12391161).[4] [5] [6] [7] [8] Publication Abstract from PubMedGPR52 is a class-A orphan G-protein-coupled receptor that is highly expressed in the brain and represents a promising therapeutic target for the treatment of Huntington's disease and several psychiatric disorders(1,2). Pathological malfunction of GPR52 signalling occurs primarily through the heterotrimeric Gs protein(2), but it is unclear how GPR52 and Gs couple for signal transduction and whether a native ligand or other activating input is required. Here we present the high-resolution structures of human GPR52 in three states: a ligand-free state, a Gs-coupled self-activation state and a potential allosteric ligand-bound state. Together, our structures reveal that extracellular loop 2 occupies the orthosteric binding pocket and operates as a built-in agonist, conferring an intrinsically high level of basal activity to GPR52(3). A fully active state is achieved when Gs is coupled to GPR52 in the absence of an external agonist. The receptor also features a side pocket for ligand binding. These insights into the structure and function of GPR52 could improve our understanding of other self-activated GPCRs, enable the identification of endogenous and tool ligands, and guide drug discovery efforts that target GPR52. Structural basis of ligand recognition and self-activation of orphan GPR52.,Lin X, Li M, Wang N, Wu Y, Luo Z, Guo S, Han GW, Li S, Yue Y, Wei X, Xie X, Chen Y, Zhao S, Wu J, Lei M, Xu F Nature. 2020 Feb 19. pii: 10.1038/s41586-020-2019-0. doi:, 10.1038/s41586-020-2019-0. PMID:32076264[9] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
Categories: Camelus glama | Human | Large Structures | Lei, M | Li, M | Wang, N | Wu, J | Xu, F | Cryo-em | G-protein coupled receptor | Membrane protein | Orphan gpcr | Self-activation