| Structural highlights
6xg6 is a 2 chain structure with sequence from "micrococcus_scarlatinae"_klein_1884 "micrococcus scarlatinae" klein 1884. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Ligands: | , , , |
| Gene: | fba2, E0F66_06355, GQY31_00620 ("Micrococcus scarlatinae" Klein 1884) |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[TRAP1_HUMAN] Chaperone that expresses an ATPase activity. Involved in maintaining mitochondrial function and polarization, most likely through stabilization of mitochondrial complex I. Is a negative regulator of mitochondrial respiration able to modulate the balance between oxidative phosphorylation and aerobic glycolysis. The impact of TRAP1 on mitochondrial respiration is probably mediated by modulation of mitochondrial SRC and inhibition of SDHA.[1] [2] [3]
Publication Abstract from PubMed
Affinity grids have great potential to facilitate rapid preparation of even quite impure samples in single-particle cryo-electron microscopy (EM). Yet despite the promising advances of affinity grids over the past decades, no single strategy has demonstrated general utility. Here we chemically functionalize cryo-EM grids coated with mostly one or two layers of graphene oxide to facilitate affinity capture. The protein of interest is tagged using a system that rapidly forms a highly specific covalent bond to its cognate catcher linked to the grid via a polyethylene glycol (PEG) spacer. Importantly, the spacer keeps particles away from both the air-water interface and the graphene oxide surface, protecting them from potential denaturation and rendering them sufficiently flexible to avoid preferential sample orientation concerns. Furthermore, the PEG spacer successfully reduces nonspecific binding, enabling high-resolution reconstructions from a much cruder lysate sample.
General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM.,Wang F, Liu Y, Yu Z, Li S, Feng S, Cheng Y, Agard DA Proc Natl Acad Sci U S A. 2020 Sep 10. pii: 2009707117. doi:, 10.1073/pnas.2009707117. PMID:32913054[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Zhang L, Karsten P, Hamm S, Pogson JH, Muller-Rischart AK, Exner N, Haass C, Whitworth AJ, Winklhofer KF, Schulz JB, Voigt A. TRAP1 rescues PINK1 loss-of-function phenotypes. Hum Mol Genet. 2013 Jul 15;22(14):2829-41. doi: 10.1093/hmg/ddt132. Epub 2013 Mar, 21. PMID:23525905 doi:http://dx.doi.org/10.1093/hmg/ddt132
- ↑ Yoshida S, Tsutsumi S, Muhlebach G, Sourbier C, Lee MJ, Lee S, Vartholomaiou E, Tatokoro M, Beebe K, Miyajima N, Mohney RP, Chen Y, Hasumi H, Xu W, Fukushima H, Nakamura K, Koga F, Kihara K, Trepel J, Picard D, Neckers L. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):E1604-12. doi:, 10.1073/pnas.1220659110. Epub 2013 Apr 5. PMID:23564345 doi:http://dx.doi.org/10.1073/pnas.1220659110
- ↑ Sciacovelli M, Guzzo G, Morello V, Frezza C, Zheng L, Nannini N, Calabrese F, Laudiero G, Esposito F, Landriscina M, Defilippi P, Bernardi P, Rasola A. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab. 2013 Jun 4;17(6):988-99. doi: 10.1016/j.cmet.2013.04.019. PMID:23747254 doi:http://dx.doi.org/10.1016/j.cmet.2013.04.019
- ↑ Wang F, Liu Y, Yu Z, Li S, Feng S, Cheng Y, Agard DA. General and robust covalently linked graphene oxide affinity grids for high-resolution cryo-EM. Proc Natl Acad Sci U S A. 2020 Sep 10. pii: 2009707117. doi:, 10.1073/pnas.2009707117. PMID:32913054 doi:http://dx.doi.org/10.1073/pnas.2009707117
|