| Structural highlights
7cto is a 6 chain structure with sequence from "micrococcus_aureus"_(rosenbach_1884)_zopf_1885 "micrococcus aureus" (rosenbach 1884) zopf 1885. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Gene: | msrB, BN1321_260062, C7P97_04695, CSC87_09070, DDL17_13745, DQV20_10340, E3A28_01365, E3K14_07190, ERS072840_01728, FVP29_01290, GF545_14165, GIX97_03240, GO677_01280, GO706_07960, GO793_06600, GO810_04540, GO915_14110, GO941_13080, M1K003_0267, NCTC7878_02957, SAMEA1469856_01218, SAMEA1469884_01806, SAMEA1531680_00578, SAMEA1531701_01923, SAST44_01500, SAST45_01536 ("Micrococcus aureus" (Rosenbach 1884) Zopf 1885) |
| Activity: | Peptide-methionine (R)-S-oxide reductase, with EC number 1.8.4.12 |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Publication Abstract from PubMed
Oxidative modification of protein structure has been shown to play a significant role in bacterial virulence and metabolism. The sulfur-containing residues are susceptible to oxidation and the enzymatic reversal of oxidized cysteine or methionine is detected in many organisms. Methionine sulfoxide reductases (Msr) are responsible for reducing oxidized methionine. The two different Msrs, MsrA and MsrB, reduce methionine R-sulfoxide and methionine S-sulfoxide, respectively through self-oxidation. This study elucidated the structure of MsrB from Staphylococcus aureus Mu50 and its changes upon oxidation. The active site shows two reduced cysteines in a close contact, implying disulfide bond would form without major structural rearrangement. When the protein is exposed to an oxidative condition, a dimeric state is observed. The dimerization of SAMsrB creates a valley structure for accepting peptidyl substrates. To the best of our knowledge, oxidation induced dimerization of SAMsrB would help to understand mechanism behind redox control that has not been well characterized.
Implication of Staphylococcus aureus MsrB dimerization upon oxidation.,Kim HJ Biochem Biophys Res Commun. 2020 Sep 14. pii: S0006-291X(20)31667-3. doi:, 10.1016/j.bbrc.2020.08.070. PMID:32943184[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Kim HJ. Implication of Staphylococcus aureus MsrB dimerization upon oxidation. Biochem Biophys Res Commun. 2020 Sep 14. pii: S0006-291X(20)31667-3. doi:, 10.1016/j.bbrc.2020.08.070. PMID:32943184 doi:http://dx.doi.org/10.1016/j.bbrc.2020.08.070
|