1z7l
From Proteopedia
Crystal structure of fragment of mouse ubiquitin-activating enzyme
Structural highlights
Function[UBA1_MOUSE] Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding an ubiquitin-E1 thioester and free AMP. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedProtein ubiquitination requires the sequential activity of three enzymes: a ubiquitin-activating enzyme (E1), a ubiquitin-conjugating enzyme (E2), and a ubiquitin-ligase (E3). The ubiquitin-transfer machinery is hierarchically organized; for every ubiquitin-activating enzyme, there are several ubiquitin-conjugating enzymes, and most ubiquitin-conjugating enzymes can in turn interact with multiple ubiquitin ligases. Despite the central role of ubiquitin-activating enzyme in this cascade, a crystal structure of a ubiquitin-activating enzyme is not available. The enzyme is thought to consist of an adenylation domain, a catalytic cysteine domain, a four-helix bundle, and possibly, a ubiquitin-like domain. Its adenylation domain can be modeled because it is clearly homologous to the structurally known adenylation domains of the activating enzymes for the small ubiquitin-like modifier (SUMO) and for the protein encoded by the neuronal precursor cell-expressed, developmentally down-regulated gene 8 (NEDD8). Low sequence similarity and vastly different domain lengths make modeling difficult for the catalytic cysteine domain that results from the juxtaposition of two catalytic cysteine half-domains. Here, we present a biochemical and crystallographic characterization of the two half-domains and the crystal structure of the larger, second catalytic cysteine half-domain of mouse ubiquitin-activating enzyme. We show that the domain is organized around a conserved folding motif that is also present in the NEDD8- and SUMO-activating enzymes, and we propose a tentative model for full-length ubiquitin-activating enzyme. Crystal structure of a fragment of mouse ubiquitin-activating enzyme.,Szczepanowski RH, Filipek R, Bochtler M J Biol Chem. 2005 Jun 10;280(23):22006-11. Epub 2005 Mar 16. PMID:15774460[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|