1e5o
From Proteopedia
Endothiapepsin complex with inhibitor DB2
Structural highlights
Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Sequence alignment suggests that xylanases evolved from two ancestral proteins and therefore can be grouped into two families, designated F and G. Family F enzymes show no sequence similarity with any known structure and their architecture is unknown. Studies of an inactive enzyme-substrate complex will help to elucidate the structural basis of binding and catalysis in the family F xylanases. RESULTS: We have therefore determined the crystal structure of the catalytic domain of a family F enzyme, Pseudomonas fluorescens subsp. cellulosa xylanase A, at 2.5 A resolution and a crystallographic R-factor of 0.20. The structure was solved using an engineered catalytic core in which the nucleophilic glutamate was replaced by a cysteine. As expected, this yielded both high-quality mercurial derivatives and an inactive enzyme which enabled the preparation of the inactive enzyme-substrate complex in the crystal. We show that family F xylanases are eight-fold alpha/beta-barrels (TIM barrels) with two active-site glutamates, one of which is the nucleophile and the other the acid-base. Xylopentaose binds to five subsites A-E with the cleaved bond between subsites D and E. Ca2+ binding, remote from the active-site glutamates, stabilizes the structure and may be involved in the binding of extended substrates. CONCLUSIONS: The architecture of P. fluorescens subsp. cellulosa has been determined crystallographically to be a commonly occurring enzyme fold, the eight-fold alpha/beta-barrel. Xylopentaose binds across the carboxy-terminal end of the alpha/beta-barrel in an active-site cleft which contains the two catalytic glutamates. Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites.,Harris GW, Jenkins JA, Connerton I, Cummings N, Lo Leggio L, Scott M, Hazlewood GP, Laurie JI, Gilbert HJ, Pickersgill RW Structure. 1994 Nov 15;2(11):1107-16. PMID:7881909[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|