| Structural highlights
Function
[R1A_CVHSA] The papain-like proteinase (PL-PRO) is responsible for the cleavages located at the N-terminus of replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF-3.[1] [2] [3] The main proteinase 3CL-PRO is responsible for the majority of cleavages as it cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Inhibited by the substrate-analog Cbz-Val-Asn-Ser-Thr-Leu-Gln-CMK (By similarity). Also contains an ADP-ribose-1-phosphate (ADRP)-binding function.[4] [5] [6] Nsp7-nsp8 hexadecamer may possibly confer processivity to the polymerase, maybe by binding to dsRNA or by producing primers utilized by the latter.[7] [8] [9] Nsp9 is a ssRNA-binding protein.[10] [11] [12]
Publication Abstract from PubMed
The COVID-19 pandemic caused by SARS-CoV-2 is a global health emergency. An attractive drug target among coronaviruses is the main protease (M(pro), 3CL(pro)), due to its essential role in processing the polyproteins that are translated from the viral RNA. We report the X-ray structures of the unliganded SARS-CoV-2 M(pro) and its complex with an alpha-ketoamide inhibitor. This was derived from a previously designed inhibitor but with the P3-P2 amide bond incorporated into a pyridone ring to enhance the half-life of the compound in plasma. Based on the structure, we developed the lead compound into a potent inhibitor of the SARS-CoV-2 M(pro) The pharmacokinetic characterization of the optimized inhibitor reveals a pronounced lung tropism and suitability for administration by the inhalative route.
Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors.,Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R Science. 2020 Mar 20. pii: science.abb3405. doi: 10.1126/science.abb3405. PMID:32198291[13]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Imbert I, Guillemot JC, Bourhis JM, Bussetta C, Coutard B, Egloff MP, Ferron F, Gorbalenya AE, Canard B. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 2006 Oct 18;25(20):4933-42. Epub 2006 Oct 5. PMID:17024178 doi:7601368
- ↑ Lindner HA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch Biochem Biophys. 2007 Oct 1;466(1):8-14. Epub 2007 Jul 14. PMID:17692280 doi:10.1016/j.abb.2007.07.006
- ↑ Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J Virol. 2009 Jul;83(13):6689-705. doi: 10.1128/JVI.02220-08. Epub 2009 Apr 15. PMID:19369340 doi:10.1128/JVI.02220-08
- ↑ Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020 Mar 20. pii: science.abb3405. doi: 10.1126/science.abb3405. PMID:32198291 doi:http://dx.doi.org/10.1126/science.abb3405
|