Structural highlights
Function
[MUSK_RAT] Receptor tyrosine kinase which plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ), the synapse between the motor neuron and the skeletal muscle. Recruitment of AGRIN by LRP4 to the MUSK signaling complex induces phosphorylation and activation of MUSK, the kinase of the complex. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskeleton and the clustering of the acetylcholine receptors (AChR) in the postsynaptic membrane. May regulate AChR phosphorylation and clustering through activation of ABL1 and Src family kinases which in turn regulate MUSK. DVL1 and PAK1 that form a ternary complex with MUSK are also important for MUSK-dependent regulation of AChR clustering. May positively regulate Rho family GTPases through FNTA. Mediates the phosphorylation of FNTA which promotes prenylation, recruitment to membranes and activation of RAC1 a regulator of the actin cytoskeleton and of gene expression. Other effectors of the MUSK signaling include DNAJA3 which functions downstream of MUSK. May also play a role within the central nervous system by mediating cholinergic responses, synaptic plasticity and memory formation.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Muscle-specific kinase (MuSK) is a receptor tyrosine kinase expressed selectively in skeletal muscle. During neuromuscular synapse formation, agrin released from motor neurons stimulates MuSK autophosphorylation in the kinase activation loop and in the juxtamembrane region, leading to clustering of acetylcholine receptors. We have determined the crystal structure of the cytoplasmic domain of unphosphorylated MuSK at 2.05 A resolution. The structure reveals an autoinhibited kinase domain in which the activation loop obstructs ATP and substrate binding. Steady-state kinetic analysis demonstrates that autophosphorylation results in a 200-fold increase in k(cat) and a 10-fold decrease in the K(m) for ATP. These studies provide a molecular basis for understanding the regulation of MuSK catalytic activity and suggest that an additional in vivo component may contribute to regulation via the juxtamembrane region.
Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation.,Till JH, Becerra M, Watty A, Lu Y, Ma Y, Neubert TA, Burden SJ, Hubbard SR Structure. 2002 Sep;10(9):1187-96. PMID:12220490[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Garcia-Osta A, Tsokas P, Pollonini G, Landau EM, Blitzer R, Alberini CM. MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation. J Neurosci. 2006 Jul 26;26(30):7919-32. PMID:16870737 doi:http://dx.doi.org/10.1523/JNEUROSCI.1674-06.2006
- ↑ Stiegler AL, Burden SJ, Hubbard SR. Crystal structure of the agrin-responsive immunoglobulin-like domains 1 and 2 of the receptor tyrosine kinase MuSK. J Mol Biol. 2006 Dec 1;364(3):424-33. Epub 2006 Sep 12. PMID:17011580 doi:10.1016/j.jmb.2006.09.019
- ↑ Till JH, Becerra M, Watty A, Lu Y, Ma Y, Neubert TA, Burden SJ, Hubbard SR. Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation. Structure. 2002 Sep;10(9):1187-96. PMID:12220490