Structural highlights
Function
[CPXB_BACME] Functions as a fatty acid monooxygenase. Catalyzes hydroxylation of medium and long-chain fatty acids at omega-1, omega-2 and omega-3 positions, with optimum chain lengths of 12-16 carbons (lauric, myristic, and palmitic acids). The reductase domain is required for electron transfer from NADP to cytochrome P450.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The substrate-bound structures of two cytochrome P450s, P450cam and P450eryF, are known. While these structures reveal important features that control substrate specificity, the problem of how conformational changes allow for substrate entry and product release remains unsolved. The structure of the haem domain of the bacterial fatty acid hydroxylase, P450BM-3, previously was solved in the substrate-free form. Unlike the substrate-bound P450cam and P450eryF structures, the substrate access channel is open in substrate-free P450BM-3. Here we present the X-ray structure of P450BM-3 at 2.7 A bound with a fatty acid substrate, palmitoleic acid. A comparison of the substrate-bound and -free forms reveals major conformational differences and provides the first detailed picture of substrate-induced conformational changes in a P450.
The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid.,Li H, Poulos TL Nat Struct Biol. 1997 Feb;4(2):140-6. PMID:9033595[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Li H, Poulos TL. The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol. 1997 Feb;4(2):140-6. PMID:9033595