3hk0
From Proteopedia
Crystal Structure of the RA and PH Domains of Grb10
Structural highlights
Function[GRB10_HUMAN] Adapter protein which modulates coupling of a number of cell surface receptor kinases with specific signaling pathways. Binds to, and suppress signals from, activated receptors tyrosine kinases, including the insulin (INSR) and insulin-like growth factor (IGF1R) receptors. The inhibitory effect can be achieved by 2 mechanisms: interference with the signaling pathway and increased receptor degradation. Delays and reduces AKT1 phosphorylation in response to insulin stimulation. Blocks association between INSR and IRS1 and IRS2 and prevents insulin-stimulated IRS1 and IRS2 tyrosine phosphorylation. Recruits NEDD4 to IGF1R, leading to IGF1R ubiquitination, increased internalization and degradation by both the proteasomal and lysosomal pathways. May play a role in mediating insulin-stimulated ubiquitination of INSR, leading to proteasomal degradation. Negatively regulates Wnt signaling by interacting with LRP6 intracellular portion and interfering with the binding of AXIN1 to LRP6. Positive regulator of the KDR/VEGFR-2 signaling pathway. May inhibit NEDD4-mediated degradation of KDR/VEGFR-2.[1] [2] [3] [4] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedGrowth factor receptor-binding proteins Grb7, Grb10 and Grb14 are adaptor proteins containing a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region and a C-terminal Src-homology-2 domain. Previous structural studies showed that the Grb14 BPS region binds as a pseudosubstrate inhibitor in the tyrosine kinase domain of the insulin receptor to suppress insulin signaling. Here we report the crystal structure of the RA and PH domains of Grb10 at 2.6-A resolution. The structure reveals that these two domains, along with the intervening linker, form an integrated, dimeric structural unit. Biochemical studies demonstrated that Grb14 binds to activated Ras, which may serve as a timing mechanism for downregulation of insulin signaling. Our results illuminate the membrane-recruitment mechanisms not only of Grb7, Grb10 and Grb14 but also of MIG-10, Rap1-interacting adaptor molecule, lamellipodin and Pico, proteins involved in actin-cytoskeleton rearrangement that share a structurally related RA-PH tandem unit. Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14.,Depetris RS, Wu J, Hubbard SR Nat Struct Mol Biol. 2009 Aug;16(8):833-9. Epub 2009 Aug 2. PMID:19648926[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
| ||||||||||||||||||||
Categories: Human | Large Structures | Depetris, R S | Hubbard, S R | Wu, J | Adapter protein | Grb10 | Ph | Phosphoprotein | Pleckstrin-homology | Ra | Ras-associating | Sh2 domain | Signaling protein

