1moo
From Proteopedia
Site Specific Mutant (H64A) of Human Carbonic Anhydrase II at high resolution
Structural highlights
Disease[CAH2_HUMAN] Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730]; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5] Function[CAH2_HUMAN] Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedUsing synchrotron radiation and a CCD detector, X-ray data have been collected at 100 K for the His64Ala mutant of human carbonic anhydrase II complexed with 4-methylimidazole (4-MI) to a maximal 1.05 A resolution, allowing full anisotropic least-squares refinement. The refined model has a conventional R factor of 15.7% for all reflections. The C(alpha) coordinates of the model presented here have an r.m.s. deviation of 0.10 A relative to the previously determined structure at 1.6 A resolution. Several amino-acid residues (six of the 255 observed) have been identified with multiple rotamer side-chain conformations. C, N and O atoms can be differentiated with selective electron-density map contouring. The estimated standard deviations for all main-chain non-H atom bond lengths and angles are 0.013 and 0.030 A, respectively, based on unrestrained full-matrix least-squares refinement. This structure gives detailed information about the tetrahedrally arranged zinc ion coordinated by three histidine N atoms (His94 N(epsilon 2), His96 N(epsilon2) and His119 N(delta1)) and a water/hydroxide, the multiple binding sites of the proton chemical rescue molecule 4-MI and the solvent networks linking the zinc-bound water/hydroxide and 4-MI molecules. This structure presents the highest resolution structure of a carbonic anhydrase isozyme so far determined and adds to the understanding of proton-transfer processes. The refined atomic structure of carbonic anhydrase II at 1.05 A resolution: implications of chemical rescue of proton transfer.,Duda D, Govindasamy L, Agbandje-McKenna M, Tu C, Silverman DN, McKenna R Acta Crystallogr D Biol Crystallogr. 2003 Jan;59(Pt 1):93-104. Epub 2002, Dec 19. PMID:12499545[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|